題目列表(包括答案和解析)
15.解:根據(jù)條件去畫滿足條件的二次函數(shù)圖象就可判斷出
某大型超市為促銷商品,特舉辦“購物搖獎100%中獎”活動,凡消費(fèi)者在該超市購物滿20元,享受一次搖獎機(jī)會,購物滿40元,享受兩次搖獎機(jī)會,依次類推。搖獎機(jī)的旋轉(zhuǎn)圓盤是均勻的,扇形區(qū)域A、B、C、D、E所對應(yīng)的圓心角的比值分別為1:2:3:4:5。相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎,獎金分別為5元、4元、3元、2元、1元。求某人購物30元,獲得獎金的分布列.
| BE | AB |
三棱柱
中,側(cè)棱與底面垂直,
,
,
分別是
,
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐![]()
的體積.
![]()
【解析】第一問利連結(jié)
,
,∵M(jìn),N是AB,
的中點∴MN//
.
又∵
平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形
是正方形.∴
.∴
.連結(jié)
,
.
∴
,又N中
的中點,∴
.
∵
與
相交于點C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
.得到結(jié)論。
⑴連結(jié)
,
,∵M(jìn),N是AB,
的中點∴MN//
.
又∵
平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,
∴四邊形
是正方形.∴
.
∴
.連結(jié)
,
.
∴
,又N中
的中點,∴
.
∵
與
相交于點C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
![]()
三.解答題:本大題共6個小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
17. (本題滿分10分)
已知函數(shù)
,
(1)求函數(shù)
的最小正周期;
(2)在
中,已知
為銳角,
,
,求
邊的長.
三、解答題:(本大題共6小題,共75分,解答應(yīng)寫出文字說明、證明過程或演算步驟.)
16. (本小題滿分12分)
已知向量
,定義函數(shù)![]()
(Ⅰ)求函數(shù)
最小正周期;
(Ⅱ)在△ABC中,角A為銳角,且
,求邊AC的長.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com