題目列表(包括答案和解析)
A.(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線
的參數(shù)方程為
(
為參數(shù)),直線
的方程為
,則曲線
上的動點
到直線
距離的最大值為 .
B.(不等式選講選做題)若存在實數(shù)
滿足不等式
,則實數(shù)
的取值范圍為
.
C.(幾何證明選講選做題)如圖,
切
于點
,割線
經(jīng)過圓心
,弦
于點
.已知
的半徑為3,
,則
.
.
![]()
(本小題滿分14分)設(shè)數(shù)列
的前
項和為
,點
在直線
上,
為常數(shù),
.
(1)求
;
(2)若數(shù)列
的公比
,數(shù)列
滿足
,求證:
為等差數(shù)列,并求
;
(3)設(shè)數(shù)列
滿足
,
為數(shù)列
的前
項和,且存在實數(shù)
滿足
,
,求
的最大值.
已知函數(shù)
的圖象過坐標(biāo)原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當(dāng)
時,
,則
。
依題意得:
,即
解得
第二問當(dāng)
時,
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當(dāng)
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時,
,令
得![]()
當(dāng)
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
!
在
上的最大值為2.
②當(dāng)
時,
.當(dāng)
時,
,
最大值為0;
當(dāng)
時,
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當(dāng)
時,即
時,
在區(qū)間
上的最大值為2;
當(dāng)
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
(本大題共13分)
已知函數(shù)
是定義在R的奇函數(shù),當(dāng)
時,
.
(1)求
的表達(dá)式;
(2)討論函數(shù)
在區(qū)間
上的單調(diào)性;
(3)設(shè)
是函數(shù)
在區(qū)間
上的導(dǎo)函數(shù),問是否存在實數(shù)
,滿足
并且使
在區(qū)間
上的值域為
,若存在,求出
的值;若不存在,請說明理由。
(本小題滿分12分)
設(shè)數(shù)列
的前
項和為
,點
在直線
上,(
為常數(shù),
,
).
(1)求
;
(2)若數(shù)列
的公比
,數(shù)列
滿足
,
,
,求證:
為等差數(shù)列,并求
;
(3)設(shè)數(shù)列
滿足
,
為數(shù)列
的前
項和,且存在實數(shù)
滿足![]()
,求
的最大值.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com