題目列表(包括答案和解析)
如圖1,在
中,
,D,E分別為AC,AB的中點(diǎn),點(diǎn)F為線段CD上的一點(diǎn),將
沿DE折起到
的位置,使
,如圖2.
(Ⅰ)求證:DE∥平面![]()
(Ⅱ)求證:![]()
(Ⅲ)線段
上是否存在點(diǎn)Q,使
?說(shuō)明理由。
![]()
【解析】(1)∵DE∥BC,由線面平行的判定定理得出
(2)可以先證
,得出
,∵
∴![]()
∴![]()
(3)Q為
的中點(diǎn),由上問(wèn)
,易知
,取
中點(diǎn)P,連接DP和QP,不難證出
,
∴
∴
,又∵
∴![]()
設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對(duì)如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以
,
于是
,
,
![]()
所以
,當(dāng)
,且
時(shí),
取得最大值1。
(3)對(duì)于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">
所以![]()
![]()
![]()
所以,![]()
對(duì)數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對(duì)于所有的
,
的最大值為![]()
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的最小正周期;
(Ⅱ)求函數(shù)
在區(qū)間
上的最大值和最小值.
【解析】(1)![]()
![]()
所以,
的最小正周期![]()
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118369506745619_ST.files/image002.png">在區(qū)間
上是增函數(shù),在區(qū)間
上是減函數(shù),
又
,
,
,
故函數(shù)
在區(qū)間
上的最大值為
,最小值為-1.
函數(shù)
在同一個(gè)周期內(nèi),當(dāng)
時(shí),
取最大值1,當(dāng)
時(shí),
取最小值
。
(1)求函數(shù)的解析式![]()
(2)函數(shù)
的圖象經(jīng)過(guò)怎樣的變換可得到
的圖象?
(3)若函數(shù)
滿足方程
求在
內(nèi)的所有實(shí)數(shù)根之和.
【解析】第一問(wèn)中利用![]()
又因![]()
又
函數(shù)![]()
第二問(wèn)中,利用
的圖象向右平移
個(gè)單位得
的圖象
再由
圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
.縱坐標(biāo)不變,得到
的圖象,
第三問(wèn)中,利用三角函數(shù)的對(duì)稱性,
的周期為![]()
在
內(nèi)恰有3個(gè)周期,
并且方程
在
內(nèi)有6個(gè)實(shí)根且![]()
同理,
可得結(jié)論。
解:(1)![]()
又因![]()
又
函數(shù)![]()
(2)
的圖象向右平移
個(gè)單位得
的圖象
再由
圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
.縱坐標(biāo)不變,得到
的圖象,
(3)
的周期為![]()
在
內(nèi)恰有3個(gè)周期,
并且方程
在
內(nèi)有6個(gè)實(shí)根且![]()
同理,![]()
故所有實(shí)數(shù)之和為![]()
已知函數(shù)
,(
),![]()
(1)若曲線
與曲線
在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)
時(shí),若函數(shù)
的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1)
,
∵曲線
與曲線
在它們的交點(diǎn)(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)令
,當(dāng)
時(shí),![]()
令
,得![]()
時(shí),
的情況如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函數(shù)
的單調(diào)遞增區(qū)間為
,
,單調(diào)遞減區(qū)間為![]()
當(dāng)
,即
時(shí),函數(shù)
在區(qū)間
上單調(diào)遞增,
在區(qū)間
上的最大值為
,
當(dāng)
且
,即
時(shí),函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增,在區(qū)間
上單調(diào)遞減,
在區(qū)間
上的最大值為![]()
當(dāng)
,即a>6時(shí),函數(shù)
在區(qū)間
內(nèi)單調(diào)遞贈(zèng),在區(qū)間
內(nèi)單調(diào)遞減,在區(qū)間
上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">
所以
在區(qū)間
上的最大值為
。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com