題目列表(包括答案和解析)
設(shè)△
的內(nèi)角
所對邊的長分別為
,且有![]()
(Ⅰ)求角A的大小;
(Ⅱ)若
,
,
為
的中點(diǎn),求
的長。
【解析】(1)由題,
,則
,故
,即
.
(2)因
,
,因
為
的中點(diǎn),故
,則
,所以![]()
設(shè)A是如下形式的2行3列的數(shù)表,
|
a |
b |
c |
|
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f
,且a+b+c+d+e+f=0
記
為A的第i行各數(shù)之和(i=1,2),
為A的第j列各數(shù)之和(j=1,2,3)記
為
中的最小值。
(1)對如下表A,求
的值
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A形如
|
1 |
1 |
-1-2d |
|
d |
d |
-1 |
其中
,求
的最大值
(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求
的最大值。
【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image007.png">,
,所以![]()
(2)
,![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image006.png">,所以
,![]()
所以![]()
當(dāng)d=0時(shí),
取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
|
a |
b |
c |
|
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個(gè)數(shù)換成它的相反數(shù),所得數(shù)表
仍滿足性質(zhì)P,并且
,因此,不妨設(shè)
,
,![]()
由
得定義知,
,
,
,
從而![]()
![]()
所以,
,由(2)知,存在滿足性質(zhì)P的數(shù)表A使
,故
的最大值為1
【考點(diǎn)定位】此題作為壓軸題難度較大,考查學(xué)生分析問題解決問題的能力,考查學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力
已知函數(shù)
,(
),![]()
(1)若曲線
與曲線
在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)
時(shí),若函數(shù)
在區(qū)間[k,2]上的最大值為28,求k的取值范圍
【解析】(1)
,
∵曲線
與曲線
在它們的交點(diǎn)(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)當(dāng)
時(shí),
,
,![]()
令
,則
,令
,
∴
為單調(diào)遞增區(qū)間,
為單調(diào)遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點(diǎn)
,所以![]()
【考點(diǎn)定位】此題應(yīng)該說是導(dǎo)數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調(diào)性,極值以及最值問題都是課本中要求的重點(diǎn)內(nèi)容,也是學(xué)生掌握比較好的知識點(diǎn),在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點(diǎn)
,比較重要
已知
.
(1)求
的單調(diào)區(qū)間;
(2)證明:當(dāng)
時(shí),
恒成立;
(3)任取兩個(gè)不相等的正數(shù)
,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
當(dāng)k
0時(shí),
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當(dāng)k>0時(shí),
>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),
的變化情況如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
設(shè)G(x)=lnx-
(x
1)
=
=![]()
0,當(dāng)且僅當(dāng)x=1時(shí),
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,綜上,當(dāng)x
1時(shí), 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=![]()
∴l(xiāng)nx0 –lnx
>0, ∴x0 >x![]()
【練】
(1)(2005高考北京卷)已知函數(shù)f(x)=-x3+3x2+9x+a, (I)求f(x)的單調(diào)遞減區(qū)間;(II)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.答案:(1)(-∞,-1),(3,+∞)(2)-7
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com