題目列表(包括答案和解析)
學(xué)校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除顏色外完全相同。每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱)
(1)求在一次游戲中
①摸出3個白球的概率;②獲獎的概率。
(2)求在兩次游戲中獲獎次數(shù)X的分布列及數(shù)學(xué)期望E(x)。
【解析】(1) ①摸出3個白球,只有甲箱摸2個白球,乙箱摸一個白球;②不少于2個包括2個白球或3個白球。(2)符合幾何分別。
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當
時,取
,有
,故
時不合題意.當
時,令
,即![]()
![]()
令
,得![]()
①當
時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當
時,
,對于
,
,故
在
上單調(diào)遞增.因此當取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當n=1時,不等式左邊=
=右邊,所以不等式成立.
當
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
設(shè)數(shù)列
的各項均為正數(shù).若對任意的
,存在
,使得
成立,則稱數(shù)列
為“Jk型”數(shù)列.
(1)若數(shù)列
是“J2型”數(shù)列,且
,
,求
;
(2)若數(shù)列
既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列
是等比數(shù)列.
【解析】1)中由題意,得
,
,
,
,…成等比數(shù)列,且公比
,
所以.![]()
(2)中證明:由{
}是“j4型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為t. 由{
}是“j3型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為
;
,…成等比數(shù)列,設(shè)公比為
;
…成等比數(shù)列,設(shè)公比為
;
某種型號的汽車在勻速行駛中每小時耗油量
關(guān)于行駛速度
的函數(shù)解析式可以表示為:
.已知甲、乙兩地相距
,設(shè)汽車的行駛速度為
,從甲地到乙地所需時間為
,耗油量為
.
(1)求函數(shù)
及
;
(2)求當
為多少時,
取得最小值,并求出這個最小值.
【解析】(1)
,根據(jù)
可求出y=f(x).
(2)求導(dǎo),根據(jù)導(dǎo)數(shù)確定其最小值.
已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC、AD的中點.
(1)求證:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值為
,求四棱錐P-ABCD的體積.
![]()
【解析】(1)證:DE//BF即可;
(2)可以利用向量法根據(jù)二面角P-BF-C的余弦值為
,確定高PD的值,即可求出四棱錐的體積.也可利用傳統(tǒng)方法直接作出二面角的平面角,求高PD的值也可.在找平面角時,要考慮運用三垂線或逆定理.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com