題型1:求軌跡方程![]()
例1.(1)一動(dòng)圓與圓
外切,同時(shí)與圓
內(nèi)切,求動(dòng)圓圓心
的軌跡方程,并說(shuō)明它是什么樣的曲線。![]()
(2)雙曲線
有動(dòng)點(diǎn)
,
是曲線的兩個(gè)焦點(diǎn),求
的重心
的軌跡方程。![]()
解析:(1)(法一)設(shè)動(dòng)圓圓心為
,半徑為
,設(shè)已知圓的圓心分別為
、
,![]()
將圓方程分別配方得:
,
,![]()
當(dāng)
與
相切時(shí),有
①![]()
當(dāng)
與
相切時(shí),有
②![]()
將①②兩式的兩邊分別相加,得
,![]()
即
③![]()
移項(xiàng)再兩邊分別平方得:![]()
④![]()
兩邊再平方得:
,![]()
整理得
,![]()
所以,動(dòng)圓圓心的軌跡方程是
,軌跡是橢圓.![]()
(法二)由解法一可得方程
,![]()
由以上方程知,動(dòng)圓圓心
到點(diǎn)
和
的距離和是常數(shù)
,所以點(diǎn)
的軌跡是焦點(diǎn)為
、
,長(zhǎng)軸長(zhǎng)等于
的橢圓,并且橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,![]()
∴
,
,∴
,
,![]()
∴
,![]()
∴圓心軌跡方程為
。![]()
(2)如圖,設(shè)
點(diǎn)坐標(biāo)各為
,∴在已知雙曲線方程中
,∴![]()
![]()
∴已知雙曲線兩焦點(diǎn)為
,![]()
∵
存在,∴![]()
![]()
由三角形重心坐標(biāo)公式有
,即
。![]()
∵
,∴
。![]()
已知點(diǎn)
在雙曲線上,將上面結(jié)果代入已知曲線方程,有![]()
![]()
即所求重心
的軌跡方程為:
。![]()
點(diǎn)評(píng):定義法求軌跡方程的一般方法、步驟;“轉(zhuǎn)移法”求軌跡方程的方法.![]()
例2.(2009年廣東卷文)(本小題滿分14分)![]()
已知橢圓G的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在
軸上,離心率為
,兩個(gè)焦點(diǎn)分別為
和
,橢圓G上一點(diǎn)到
和
的距離之和為12.圓
:![]()
的圓心為點(diǎn)
.![]()
(1)求橢圓G的方程![]()
(2)求
的面積![]()
(3)問(wèn)是否存在圓
包圍橢圓G?請(qǐng)說(shuō)明理由.![]()
解(1)設(shè)橢圓G的方程為:
(
)半焦距為c;![]()
則
, 解得
, ![]()
![]()
所求橢圓G的方程為:
.
![]()
(2 )點(diǎn)
的坐標(biāo)為![]()
![]()
![]()
![]()
(3)若
,由
可知點(diǎn)(6,0)在圓
外,![]()
若
,由
可知點(diǎn)(-6,0)在圓
外;![]()
不論K為何值圓
都不能包圍橢圓G.![]()
題型2:圓錐曲線中最值和范圍問(wèn)題![]()
例3.(1)(2009遼寧卷理)以知F是雙曲線
的左焦點(diǎn),
是雙曲線右支上的動(dòng)點(diǎn),則
的最小值為
。![]()
[解析]注意到P點(diǎn)在雙曲線的兩只之間,且雙曲線右焦點(diǎn)為F’(4,0),![]()
于是由雙曲線性質(zhì)|PF|-|PF’|=2a=4![]()
而|PA|+|PF’|≥|AF’|=5![]()
兩式相加得|PF|+|PA|≥9,當(dāng)且僅當(dāng)A、P、F’三點(diǎn)共線時(shí)等號(hào)成立.![]()
[答案]9![]()
(2)(2009重慶卷文、理)已知橢圓
的左、右焦點(diǎn)分別為
,若橢圓上存在一點(diǎn)
使
,則該橢圓的離心率的取值范圍為
.![]()
[解析1]因?yàn)樵?sub>
中,由正弦定理得![]()
![]()
則由已知,得
,即![]()
![]()
設(shè)點(diǎn)
由焦點(diǎn)半徑公式,得
則![]()
![]()
記得
由橢圓的幾何性質(zhì)知
,整理得![]()
解得
,故橢圓的離心率![]()
![]()
[解析2] 由解析1知
由橢圓的定義知
![]()
,由橢圓的幾何性質(zhì)知
所以
以下同解析1.![]()
[答案]![]()
![]()
(3)(2009四川卷理)已知直線
和直線
,拋物線
上一動(dòng)點(diǎn)
到直線
和直線
的距離之和的最小值是( )![]()
A.2
B.3 C.
D.
![]()
[考點(diǎn)定位]本小題考查拋物線的定義、點(diǎn)到直線的距離,綜合題。![]()
[解析1]直線
為拋物線
的準(zhǔn)線,由拋物線的定義知,P到
的距離等于P到拋物線的焦點(diǎn)
的距離,故本題化為在拋物線
上找一個(gè)點(diǎn)
使得
到點(diǎn)
和直線
的距離之和最小,最小值為
到直線
的距離,即
,故選擇A。![]()
[解析2]如圖,由題意可知![]()
[答案]A
點(diǎn)評(píng):由△PAF成立的條件
,再延伸到特殊情形P、A、F共線,從而得出
這一關(guān)鍵結(jié)論.
例4.(1)(2009江蘇卷)(本題滿分10分)
在平面直角坐標(biāo)系
中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過(guò)點(diǎn)A(2,2),其焦點(diǎn)F在
軸上。
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求過(guò)點(diǎn)F,且與直線OA垂直的直線的方程;
(3)設(shè)過(guò)點(diǎn)
的直線交拋物線C于D、E兩點(diǎn),ME=2DM,記D和E兩點(diǎn)間的距離為
,求
關(guān)于
的表達(dá)式。
![]()
![]()
(2)(2009山東卷文)(本小題滿分14分)
設(shè)
,在平面直角坐標(biāo)系中,已知向量
,向量
,
,動(dòng)點(diǎn)
的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(2)已知
,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且
(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知
,設(shè)直線
與圓C:
(1<R<2)相切于A1,且
與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
解(1)因?yàn)?sub>
,
,
,
所以
, 即
.
當(dāng)m=0時(shí),方程表示兩直線,方程為
;
當(dāng)
時(shí), 方程表示的是圓
當(dāng)
且
時(shí),方程表示的是橢圓;
當(dāng)
時(shí),方程表示的是雙曲線.
(2).當(dāng)
時(shí), 軌跡E的方程為
,設(shè)圓心在原點(diǎn)的圓的一條切線為
,解方程組
得
,即
,
要使切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,
則使△=
,
即
,即
,
且![]()
,
要使
, 需使
,即
,
所以
, 即
且
, 即
恒成立.
所以又因?yàn)橹本
為圓心在原點(diǎn)的圓的一條切線,
所以圓的半徑為
,
, 所求的圓為
.
當(dāng)切線的斜率不存在時(shí),切線為
,與
交于點(diǎn)
或
也滿足
.
綜上, 存在圓心在原點(diǎn)的圓
,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且
.
(3)當(dāng)
時(shí),軌跡E的方程為
,設(shè)直線
的方程為
,因?yàn)橹本
與圓C:
(1<R<2)相切于A1, 由(2)知
, 即
①,
因?yàn)?sub>
與軌跡E只有一個(gè)公共點(diǎn)B1,
由(2)知
得
,
即
有唯一解
則△=
, 即
,
②
由①②得
, 此時(shí)A,B重合為B1(x1,y1)點(diǎn),
由
中
,所以,
,
B1(x1,y1)點(diǎn)在橢圓上,所以
,所以
,
在直角三角形OA1B1中,
因?yàn)?sub>
當(dāng)且僅當(dāng)
時(shí)取等號(hào),所以
,即
當(dāng)
時(shí)|A1B1|取得最大值,最大值為1.
[命題立意]:本題主要考查了直線與圓的方程和位置關(guān)系,以及直線與橢圓的位置關(guān)系,可以通過(guò)解方程組法研究有沒(méi)有交點(diǎn)問(wèn)題,有幾個(gè)交點(diǎn)的問(wèn)題.
題型3:證明問(wèn)題和對(duì)稱(chēng)問(wèn)題
例5.(1)如圖,橢圓
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F
、F
分別為橢圓的左、右焦點(diǎn),M為線段AF
的中點(diǎn),求證:∠ATM=∠AF
T。
解 (1)由題意:
,解得
,所求橢圓方程為 ![]()
(2)(2009天津卷文)(本小題滿分14分)
已知橢圓
(
)的兩個(gè)焦點(diǎn)分別為
,過(guò)點(diǎn)
的直線與橢圓相交于點(diǎn)A,B兩點(diǎn),且![]()
(Ⅰ求橢圓的離心率;
(Ⅱ)直線AB的斜率;
(Ⅲ)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),直線
上有一點(diǎn)H(m,n)(
)在
的外接圓上,求
的值。
解 (1)由
,得
,從而
,整理得
,故離心率![]()
(2)由(1)知,
,所以橢圓的方程可以寫(xiě)為![]()
設(shè)直線AB的方程為
即![]()
由已知設(shè)
則它們的坐標(biāo)滿足方程組
消去y整理,得![]()
依題意,![]()
而
,有題設(shè)知,點(diǎn)B為線段AE的中點(diǎn),
所以![]()
聯(lián)立三式,解得
,將結(jié)果代入韋達(dá)定理中解得
.
(3)由(2)知,
,當(dāng)
時(shí),得A
由已知得![]()
線段
的垂直平分線l的方程為
直線l與x軸的交點(diǎn)
是
的外接圓的圓心,因此外接圓的方程為![]()
直線
的方程為
,于是點(diǎn)
滿足方程組![]()
由
,解得
,故![]()
當(dāng)
時(shí),同理可得
.
點(diǎn)評(píng):本小題主要考查直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行推理運(yùn)算的能力和解決問(wèn)題的能力。
(3)在平面直角坐標(biāo)系
O
中,直線
與拋物線
=2
相交于A、B兩點(diǎn).
①求證:“如果直線
過(guò)點(diǎn)T(3,0),那么![]()
=3”是真命題;
②寫(xiě)出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由.
解析:
(3)證明:①設(shè)過(guò)點(diǎn)T(3,0)的直線l交拋物線y2=2x于點(diǎn)A(x1,y1)、B(x12,y2).
當(dāng)直線l的鈄率下存在時(shí),直線l的方程為x=3,此時(shí),直線l與拋物線相交于A(3,
)、B(3,-
),∴
=3。
當(dāng)直線l的鈄率存在時(shí),設(shè)直線l的方程為y=k(x-3),其中k≠0.
|
當(dāng) |
|
得ky2-2y-6k=0,則y1y2=-6. |
|
y=k(x-3) |
又∵x1=
y
, x2=
y
,
∴
=x1x2+y1y2=
=3.
綜上所述, 命題“如果直線l過(guò)點(diǎn)T(3,0),那么
=3”是真命題.
②逆命題是:設(shè)直線l交拋物線y2=2x于A、B兩點(diǎn),如果
=3,那么該直線過(guò)點(diǎn)T(3,0).該命題是假命題.
例如:取拋物線上的點(diǎn)A(2,2),B(
,1),此時(shí)
=3,
直線AB的方程為Y=
(X+1),而T(3,0)不在直線AB上.
點(diǎn)評(píng):由拋物線y2=2x上的點(diǎn)A(x1,y1)、B(x12,y2)滿足
=3,可得y1y2=-6。或y1y2=2,如果y1y2=-6,可證得直線AB過(guò)點(diǎn)(3,0);如果y1y2=2,
可證得直線AB過(guò)點(diǎn)(-1,0),而不過(guò)點(diǎn)(3,0)。
例6.(1)(2009遼寧卷文、理)(本小題滿分12分)
已知,橢圓C以過(guò)點(diǎn)A(1,
),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1) 求橢圓C的方程;
(2) E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值!
(Ⅰ)解 由題意,c=1,可設(shè)橢圓方程為
。
因?yàn)?i>A在橢圓上,所以
,解得
=3,
=
(舍去)。
所以橢圓方程為
.
(Ⅱ)證明 設(shè)直線AE方程:得
,代入
得
![]()
設(shè)E(
,
),F(
,
).因?yàn)辄c(diǎn)A(1,
)在橢圓上,
所以
,
。
又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以
代
,可得
,
。
所以直線EF的斜率
。
即直線EF的斜率為定值,其值為
!
(2)(2009福建卷文)(本小題滿分14分)
已知直線
經(jīng)過(guò)橢圓
的左頂點(diǎn)A和上頂點(diǎn)D,橢圓
的右頂點(diǎn)為
,點(diǎn)
和橢圓
上位于
軸上方的動(dòng)點(diǎn),直線,
與直線![]()
分別交于
兩點(diǎn).
(I)求橢圓
的方程;
(Ⅱ)求線段MN的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓
上是否存在這樣的點(diǎn)
,使得
的面積為
?若存在,確定點(diǎn)
的個(gè)數(shù),若不存在,說(shuō)明理由
![]()
解 方法一(I)由已知得,橢圓
的左頂點(diǎn)為
上頂點(diǎn)為![]()
故橢圓
的方程為![]()
(Ⅱ)直線AS的斜率
顯然存在,且
,故可設(shè)直線
的方程為
,
從而![]()
由
得
0
設(shè)
則
得
,從而
即
又![]()
由
得![]()
![]()
故![]()
又
當(dāng)且僅當(dāng)
,即
時(shí)等號(hào)成立
時(shí),線段
的長(zhǎng)度取最小值![]()
(Ⅲ)由(Ⅱ)可知,當(dāng)
取最小值時(shí),![]()
此時(shí)
的方程為![]()
要使橢圓
上存在點(diǎn)
,使得
的面積等于
,只須
到直線
的距離等于
,所以
在平行于
且與
距離等于
的直線
上。
設(shè)直線![]()
則由
解得
或
題型4:知識(shí)交匯題
例7.已知點(diǎn)
,![]()
是拋物線
上的兩個(gè)動(dòng)點(diǎn),
是坐標(biāo)原點(diǎn),向量
,
滿足
.設(shè)圓
的方程為
![]()
(I) 證明線段
是圓
的直徑;
(II)當(dāng)圓C的圓心到直線X-2Y=0的距離的最小值為
時(shí),求p的值.
解析:(I)證明1: ![]()
![]()
整理得: ![]()
試題詳情
2.圓錐曲線綜合問(wèn)題![]()
(1)圓錐曲線中的最值問(wèn)題、范圍問(wèn)題![]()
通常有兩類(lèi):一類(lèi)是有關(guān)長(zhǎng)度和面積的最值問(wèn)題;一類(lèi)是圓錐曲線中有關(guān)的幾何元素的最值問(wèn)題。這些問(wèn)題往往通過(guò)定義,結(jié)合幾何知識(shí),建立目標(biāo)函數(shù),利用函數(shù)的性質(zhì)或不等式知識(shí),以及觀形、設(shè)參、轉(zhuǎn)化、替換等途徑來(lái)解決。解題時(shí)要注意函數(shù)思想的運(yùn)用,要注意觀察、分析圖形的特征,將形和數(shù)結(jié)合起來(lái)。![]()
圓錐曲線的弦長(zhǎng)求法:![]()
設(shè)圓錐曲線C∶f(x,y)=0與直線l∶y=kx+b相交于A(x1,y1)、B(x2,y2)兩點(diǎn),則弦長(zhǎng)|AB|為:![]()
![]()
![]()
若弦AB過(guò)圓錐曲線的焦點(diǎn)F,則可用焦半徑求弦長(zhǎng),|AB|=|AF|+|BF|.![]()
在解析幾何中求最值,關(guān)鍵是建立所求量關(guān)于自變量的函數(shù)關(guān)系,再利用代數(shù)方法求出相應(yīng)的最值.注意點(diǎn)是要考慮曲線上點(diǎn)坐標(biāo)(x,y)的取值范圍.![]()
(2)對(duì)稱(chēng)、存在性問(wèn)題,與圓錐曲線有關(guān)的證明問(wèn)題![]()
它涉及到線段相等、角相等、直線平行、垂直的證明方法,以及定點(diǎn)、定值問(wèn)題的判斷方法。![]()
(3)實(shí)際應(yīng)用題![]()
數(shù)學(xué)應(yīng)用題是高考中必考的題型,隨著高考改革的深入,同時(shí)課本上也出現(xiàn)了許多與圓錐曲線相關(guān)的實(shí)際應(yīng)用問(wèn)題,如橋梁的設(shè)計(jì)、探照燈反光鏡的設(shè)計(jì)、聲音探測(cè),以及行星、人造衛(wèi)星、彗星運(yùn)行軌道的計(jì)算等.![]()
涉及與圓錐曲線有關(guān)的應(yīng)用問(wèn)題的解決關(guān)鍵是建立坐標(biāo)系,合理選擇曲線模型,然后轉(zhuǎn)化為相應(yīng)的數(shù)學(xué)問(wèn)題作出定量或定性分析與判斷,解題的一般思想是:![]()
![]()
![]()
(4)知識(shí)交匯題![]()
圓錐曲線經(jīng)常和數(shù)列、三角、平面向量、不等式、推理知識(shí)結(jié)合到一塊出現(xiàn)部分有較強(qiáng)區(qū)分度的綜合題.![]()
1.曲線方程![]()
(1)求曲線(圖形)方程的方法及其具體步驟如下:![]()
|
步 驟 |
含 義 |
說(shuō) 明 |
|
1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動(dòng)點(diǎn)坐標(biāo)。 |
建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo)。 |
(1)
所研究的問(wèn)題已給出坐標(biāo)系,即可直接設(shè)點(diǎn)。 (2) 沒(méi)有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。 |
|
2、現(xiàn)(限):由限制條件,列出幾何等式。 |
寫(xiě)出適合條件P的點(diǎn)M的集合P={M|P(M)} |
這是求曲線方程的重要一步,應(yīng)仔細(xì)分析題意,使寫(xiě)出的條件簡(jiǎn)明正確。 |
|
3、“代”:代換 |
用坐標(biāo)法表示條件P(M),列出方程f(x,y)=0 |
常常用到一些公式。 |
|
4、“化”:化簡(jiǎn) |
化方程f(x,y)=0為最簡(jiǎn)形式。 |
要注意同解變形。 |
|
5、證明 |
證明化簡(jiǎn)以后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。 |
化簡(jiǎn)的過(guò)程若是方程的同解變形,可以不要證明,變形過(guò)程中產(chǎn)生不增根或失根,應(yīng)在所得方程中刪去或補(bǔ)上(即要注意方程變量的取值范圍)。 |
這五個(gè)步驟(不包括證明)可濃縮為五字“口訣”:建設(shè)現(xiàn)(限)代化”![]()
(2)求曲線方程的常見(jiàn)方法:![]()
直接法:也叫“五步法”,即按照求曲線方程的五個(gè)步驟來(lái)求解。這是求曲線方程的基本方法。![]()
轉(zhuǎn)移代入法:這個(gè)方法又叫相關(guān)點(diǎn)法或坐標(biāo)代換法。即利用動(dòng)點(diǎn)是定曲線上的動(dòng)點(diǎn),另一動(dòng)點(diǎn)依賴(lài)于它,那么可尋求它們坐標(biāo)之間的關(guān)系,然后代入定曲線的方程進(jìn)行求解。![]()
幾何法:就是根據(jù)圖形的幾何性質(zhì)而得到軌跡方程的方法.![]()
參數(shù)法:根據(jù)題中給定的軌跡條件,用一個(gè)參數(shù)來(lái)分別動(dòng)點(diǎn)的坐標(biāo),間接地把坐標(biāo)x,y聯(lián)系起來(lái),得到用參數(shù)表示的方程。如果消去參數(shù),就可以得到軌跡的普通方程。![]()
2.可能出現(xiàn)1道考查求軌跡的選擇題或填空題,也可能出現(xiàn)在解答題中間的小問(wèn).![]()
1.出現(xiàn)1道復(fù)合其它知識(shí)的圓錐曲線綜合題;![]()
2.與圓錐曲線有關(guān)的最值問(wèn)題、參數(shù)范圍問(wèn)題,這類(lèi)問(wèn)題的綜合型較大,解題中需要根據(jù)具體問(wèn)題、靈活運(yùn)用解析幾何、平面幾何、函數(shù)、不等式、三角知識(shí),正確的構(gòu)造不等式或方程,體現(xiàn)了解析幾何與其他數(shù)學(xué)知識(shí)的聯(lián)系。![]()
預(yù)測(cè)2010年高考:![]()
近年來(lái)圓錐曲線在高考中比較穩(wěn)定,解答題往往以中檔題或以押軸題形式出現(xiàn),主要考察學(xué)生邏輯推理能力、運(yùn)算能力,考察學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。但圓錐曲線在新課標(biāo)中化歸到選學(xué)內(nèi)容,要求有所降低,估計(jì)2007年高考對(duì)本講的考察,仍將以以下三類(lèi)題型為主.![]()
1.求曲線(或軌跡)的方程,對(duì)于這類(lèi)問(wèn)題,高考常常不給出圖形或不給出坐標(biāo)系,以考察學(xué)生理解解析幾何問(wèn)題的基本思想方法和能力;![]()
3.了解圓錐曲線的簡(jiǎn)單應(yīng)用.![]()
2.通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;![]()
1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問(wèn)題;癁榈仁浇鉀Q,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com