4.常用性質(zhì):n.n!=(n+1)!-n!;即![]()
(1≤r≤n);
3.組合數(shù)性質(zhì):
;
2.組合數(shù)公式:
(m≤n),
;
1.排列數(shù)公式:
=n(n-1)(n-2)…(n-m+1)=
(m≤n,m、n∈N*),當(dāng)m=n時(shí)為全排列
=n(n-1)…2
1;
12.球的體積公式V=
,表面積公式
;掌握球面上兩點(diǎn)A、B間的距離求法:(1)計(jì)算線段AB的長(zhǎng),(2)計(jì)算球心角∠AOB的弧度數(shù);(3)用弧長(zhǎng)公式計(jì)算劣弧AB的長(zhǎng);
11.歐拉公式:如果簡(jiǎn)單多面體的頂點(diǎn)數(shù)為V,面數(shù)為F,棱數(shù)為E.那么V+F-E=2;并且棱數(shù)E=各頂點(diǎn)連著的棱數(shù)和的一半=各面邊數(shù)和的一半;
10.正方體和長(zhǎng)方體的外接球的直徑等與其體對(duì)角線長(zhǎng);
9.已知:長(zhǎng)方體的體對(duì)角線與過(guò)同一頂點(diǎn)的三條棱所成的角分別為
因此有cos2
+cos2
+cos2
=1; 若長(zhǎng)方體的體對(duì)角線與過(guò)同一頂點(diǎn)的三側(cè)面所成的角分別為
則有cos2
+cos2
+cos2
=2;
8.正棱錐的各側(cè)面與底面所成的角相等,記為
,則S側(cè)cos
=S底;
7.空間距離的求法
(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進(jìn)行計(jì)算;
(2)求點(diǎn)到直線的距離,一般用三垂線定理作出垂線再求解;
(3)求點(diǎn)到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來(lái)作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線,轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com