欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

為確定一個平面上點的位置,可用的數(shù)據(jù)個數(shù)為

A.1個
B.2個
C.3個
D.4個
B
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:初中數(shù)學 來源:同步題 題型:單選題

為確定一個平面上點的位置,可用的數(shù)據(jù)個數(shù)為

[     ]

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解:如圖1,在平面內(nèi)選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點的“極坐標”,這樣建立的坐標系稱為“極坐標系”.
應(yīng)用:在圖2的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標應(yīng)記為( 。
A、(60°,4)
B、(45°,4)
C、(60°,2
2
D、(50°,2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們知道,如果已知一點M相對于定點O的距離和方向,那么這個點就被唯一確定了.這就是說,我們可用角度和距離來確定平面上點的相對位置.
在平面內(nèi)取一個定點O,叫做極點,引一條射線OP,叫做極軸,再選定一個長度單位和角度的正方向(通常取逆時針方向).對于平面內(nèi)任一點M,用r表示線段OM的長度,θ表示從OP到OM的角度,r叫做點M的極徑,θ叫做點M的極角,有序數(shù)對(r,θ)就叫做點M的極坐標,這樣就在平面上建立了極坐標系.極坐標為(r,θ)的點M,可表示為M(r,θ).建立極坐標系后,給定r和θ就可以在平面內(nèi)唯一確定一點M.
如圖,如果點D的位置為(3,5),點A的位置為(4,0).
(1)請表示點B與點C的位置;
(2)若以O(shè)為極點,OP為極軸,寫出A點、B點和C點的極坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們知道,如果已知一點M相對于定點O的距離和方向,那么這個點就被唯一確定了.這就是說,我們可用角度和距離來確定平面上點的相對位置.
在平面內(nèi)取一個定點O,叫做極點,引一條射線OP,叫做極軸,再選定一個長度單位和角度的正方向(通常取逆時針方向).對于平面內(nèi)任一點M,用r表示線段OM的長度,θ表示從OP到OM的角度,r叫做點M的極徑,θ叫做點M的極角,有序數(shù)對(r,θ)就叫做點M的極坐標,這樣就在平面上建立了極坐標系.極坐標為(r,θ)的點M,可表示為M(r,θ).建立極坐標系后,給定r和θ就可以在平面內(nèi)唯一確定一點M.
如圖,如果點D的位置為(3,5),點A的位置為(4,0).
(1)請表示點B與點C的位置;
(2)若以O(shè)為極點,OP為極軸,寫出A點、B點和C點的極坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們知道,如果已知一點M相對于定點O的距離和方向,那么這個點就被唯一確定了.這就是說,我們可用角度和距離來確定平面上點的相對位置.
在平面內(nèi)取一個定點O,叫做極點,引一條射線OP,叫做極軸,再選定一個長度單位和角度的正方向(通常取逆時針方向).對于平面內(nèi)任一點M,用r表示線段OM的長度,θ表示從OP到OM的角度,r叫做點M的極徑,θ叫做點M的極角,有序數(shù)對(r,θ)就叫做點M的極坐標,這樣就在平面上建立了極坐標系.極坐標為(r,θ)的點M,可表示為M(r,θ).建立極坐標系后,給定r和θ就可以在平面內(nèi)唯一確定一點M.
如圖,如果點D的位置為(3,5),點A的位置為(4,0).
(1)請表示點B與點C的位置;
(2)若以O(shè)為極點,OP為極軸,寫出A點、B點和C點的極坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖①,∠MON=90°,點A是射線ON上的一個定點,OA=4,點B是射線OM上的一個動點,分別以O(shè)A、AB為邊在∠MON的內(nèi)部作等邊三角形AOP和ABQ,連接PQ
(1)求∠APQ的度數(shù).
(2)當點B在射線OM上移動時,四邊形AOPQ的形狀也隨之發(fā)生變化.它能變化成一個平行四邊形嗎?若能,確定點B的位置;若不能,說明理由.
(3)若直線AP與BQ相交于點C,設(shè)△ABQ的面積為S1,四邊形AOBP面積為S2,當S1=2S2時,判定BQ與OB的位置關(guān)系.(可利用備用圖)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2013年廣東省汕頭市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

已知如圖①,∠MON=90°,點A是射線ON上的一個定點,OA=4,點B是射線OM上的一個動點,分別以O(shè)A、AB為邊在∠MON的內(nèi)部作等邊三角形AOP和ABQ,連接PQ
(1)求∠APQ的度數(shù).
(2)當點B在射線OM上移動時,四邊形AOPQ的形狀也隨之發(fā)生變化.它能變化成一個平行四邊形嗎?若能,確定點B的位置;若不能,說明理由.
(3)若直線AP與BQ相交于點C,設(shè)△ABQ的面積為S1,四邊形AOBP面積為S2,當S1=2S2時,判定BQ與OB的位置關(guān)系.(可利用備用圖)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省宜昌市當陽市中考數(shù)學模擬試卷(張新柱)(解析版) 題型:解答題

已知如圖①,∠MON=90°,點A是射線ON上的一個定點,OA=4,點B是射線OM上的一個動點,分別以O(shè)A、AB為邊在∠MON的內(nèi)部作等邊三角形AOP和ABQ,連接PQ
(1)求∠APQ的度數(shù).
(2)當點B在射線OM上移動時,四邊形AOPQ的形狀也隨之發(fā)生變化.它能變化成一個平行四邊形嗎?若能,確定點B的位置;若不能,說明理由.
(3)若直線AP與BQ相交于點C,設(shè)△ABQ的面積為S1,四邊形AOBP面積為S2,當S1=2S2時,判定BQ與OB的位置關(guān)系.(可利用備用圖)

查看答案和解析>>

科目:初中數(shù)學 來源:2012年山東省青島市李滄區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設(shè)只有兩個人時,設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結(jié):
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了______分鐘,共節(jié)省了______分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設(shè)計多個可變對象的數(shù)學問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學思想就叫做局部調(diào)整法.
【實踐應(yīng)用1】
如圖1在銳角△ABC中,AB=,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關(guān)于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使______,此時BM+MN的最小值是______.
【實踐應(yīng)用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構(gòu)成三角形,則△PQR的最大面積是______,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設(shè)只有兩個人時,設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結(jié):
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設(shè)計多個可變對象的數(shù)學問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學思想就叫做局部調(diào)整法.
【實踐應(yīng)用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關(guān)于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應(yīng)用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構(gòu)成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>


同步練習冊答案