欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若曲線y=x2的一條切線l與直線x+4y-8=0垂直,則l的方程為

A.4x+y+4=0
B.x-4y-4=0
C.4x-y-12=0
D.4x-y-4=0

相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:同步題 題型:單選題

若曲線y=x2的一條切線l與直線x+4y-8=0垂直,則l的方程為
[     ]
A.4x+y+4=0
B.x-4y-4=0
C.4x-y-12=0
D.4x-y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省豫東、豫北十所名校高三測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知

    (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

    (Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y="kx" +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y="kx" +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-數(shù)學(xué)公式
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=數(shù)學(xué)公式.請結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002-2013學(xué)年江蘇省泰州二中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=.請結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標綜合版 專題復(fù)習(xí) 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知

(Ⅰ)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標綜合版 專題復(fù)習(xí) 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知

(Ⅰ)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

(Ⅱ)設(shè)P(x1,f(x1),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(Ⅰ)中的結(jié)論證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天利38套《2008全國各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)文 大綱版 題型:044

如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0

(Ⅰ)若以l0為一條準線,中心在坐標原點的橢圓恰好過點F,求橢圓的方程;

(Ⅱ)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為P,且,求直線PQ的斜率的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案