欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖所示,在正方形ABCD所在平面找點P,使得△PAB、△PBC、△PDC、△PAD均為等腰三角形,則滿足條件的點P有( 。
A.5個B.9個C.11個D.13個
魔方格
B
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在正方形ABCD所在平面找點P,使得△PAB、△PBC、△PDC、△PAD均為等腰三角形,則滿足條件的點P有(  )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,在正方形ABCD所在平面找點P,使得△PAB、△PBC、△PDC、△PAD均為等腰三角形,則滿足條件的點P有( 。
A.5個B.9個C.11個D.13個
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖所示,在正方形ABCD所在平面找點P,使得△PAB、△PBC、△PDC、△PAD均為等腰三角形,則滿足條件的點P有


  1. A.
    5個
  2. B.
    9個
  3. C.
    11個
  4. D.
    13個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

七年級我們曾學過“兩點之間線段最短”的知識,常可利用它來解決兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習題:

如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最。

圖2

 

圖1

 

我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點,就是要求的點P.

有很多問題都可用類似的方法去思考解決.

探究:

1.如圖3,正方形ABCD的邊長為2,E為BC的中點, P是BD上一動點.連結(jié)EP,CP,則EP+CP的最小值是________;

運用:

2.如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應(yīng)該是        ;

操作:

3.如圖5,A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最。ú粚懽鞣,保留作圖痕跡)

                  

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省南京市溧水縣中考一模數(shù)學試卷(解析版) 題型:解答題

七年級我們曾學過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習題:

如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最。

圖2

 

圖1

 

我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點,就是要求的點P.

有很多問題都可用類似的方法去思考解決.

探究:

1.如圖3,正方形ABCD的邊長為2,E為BC的中點, P是BD上一動點.連結(jié)EP,CP,則EP+CP的最小值是________;

運用:

2.如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應(yīng)該是         ;

操作:

3.如圖5,A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最小.(不寫作法,保留作圖痕跡)

                   

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

七年級我們曾學過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習題:
如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最小.

圖2

 
圖1
 

我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點,就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
小題1:如圖3,正方形ABCD的邊長為2,E為BC的中點, P是BD上一動點.連結(jié)EP,CP,則EP+CP的最小值是________

運用:
小題2:如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應(yīng)該是        ;
操作:
小題3:如圖5,A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最。ú粚懽鞣,保留作圖痕跡)
                 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中的正方形ABCD的邊長為acm(a>2),B與坐標原點重合,邊AB在y軸正半軸,動點P從點B出發(fā),以2cm/s的速度沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度沿A→B方向,向點B運動,設(shè)P,Q兩點同時出發(fā),運動時間為ts.
(1)若t=1時,△BPQ的面積為3cm2,則a的值為多少?
(2)在(1)的條件下,以點P為圓心,作⊙P,使得⊙P與對角線BD相切如圖(b)所示,問:當點P在CD上動動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點?若存在,請寫出符合條件的t的值并直接寫出直線PQ解析式(其中一種情形需有計算過程,其余的只要直接寫出答案);若不存在,請說明理由.
(3)在(1)的條件下,且t<
32
,點P在BC上運動時,△PQD是以PD為一腰的等腰三角形,在直線BD上找一點E,在x軸上找一點F,是否存在以E,F(xiàn),P,Q為頂點的平行四邊形?若存在,求出E,F(xiàn)兩點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年黑龍江省哈爾濱市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

如圖,在平面直角坐標系中的正方形ABCD的邊長為acm(a>2),B與坐標原點重合,邊AB在y軸正半軸,動點P從點B出發(fā),以2cm/s的速度沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度沿A→B方向,向點B運動,設(shè)P,Q兩點同時出發(fā),運動時間為ts.
(1)若t=1時,△BPQ的面積為3cm2,則a的值為多少?
(2)在(1)的條件下,以點P為圓心,作⊙P,使得⊙P與對角線BD相切如圖(b)所示,問:當點P在CD上動動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點?若存在,請寫出符合條件的t的值并直接寫出直線PQ解析式(其中一種情形需有計算過程,其余的只要直接寫出答案);若不存在,請說明理由.
(3)在(1)的條件下,且,點P在BC上運動時,△PQD是以PD為一腰的等腰三角形,在直線BD上找一點E,在x軸上找一點F,是否存在以E,F(xiàn),P,Q為頂點的平行四邊形?若存在,求出E,F(xiàn)兩點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中的正方形ABCD的邊長為acm(a>2),B與坐標原點重合,邊AB在y軸正半軸,動點P從點B出發(fā),以2cm/s的速度沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度沿A→B方向,向點B運動,設(shè)P,Q兩點同時出發(fā),運動時間為ts.
(1)若t=1時,△BPQ的面積為3cm2,則a的值為多少?
(2)在(1)的條件下,以點P為圓心,作⊙P,使得⊙P與對角線BD相切如圖(b)所示,問:當點P在CD上動動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點?若存在,請寫出符合條件的t的值并直接寫出直線PQ解析式(其中一種情形需有計算過程,其余的只要直接寫出答案);若不存在,請說明理由.
(3)在(1)的條件下,且數(shù)學公式,點P在BC上運動時,△PQD是以PD為一腰的等腰三角形,在直線BD上找一點E,在x軸上找一點F,是否存在以E,F(xiàn),P,Q為頂點的平行四邊形?若存在,求出E,F(xiàn)兩點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

七年級我們曾學過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習題:
如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最小.

圖2

 
圖1
 

我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點,就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
【小題1】如圖3,正方形ABCD的邊長為2,E為BC的中點, P是BD上一動點.連結(jié)EP,CP,則EP+CP的最小值是________;

運用:
【小題2】如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應(yīng)該是        ;
操作:
【小題3】如圖5,A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最。ú粚懽鞣,保留作圖痕跡)
                 

查看答案和解析>>


同步練習冊答案