已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( )| A.f(2a)<f(3)<f(log2a) | B.f(3)<f(log2a)<f(2a) | | C.f(log2a)<f(3)<f(2a) | D.f(log2a)<f(2a)<f(3) |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足(x-2)f′(x)>0,若2<a<4則( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:青島一模
題型:單選題
已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( 。
| A.f(2a)<f(3)<f(log2a) | B.f(3)<f(log2a)<f(2a) |
| C.f(log2a)<f(3)<f(2a) | D.f(log2a)<f(2a)<f(3) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足(x-2)f'(x)>0,若2<a<4則( )
| A.f(2a)<f(3)<f(log2a) | B.f(log2a)<f(3)<f(2a) |
| C.f(3)<f(log2a)<f(2a) | D.f(log2a)<f(2a)<f(3) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年福建省泉州一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足(x-2)f'(x)>0,若2<a<4則( )
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a)
C.f(3)<f(log2a)<f(2a)
D.f(log2a)<f(2a)<f(3)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年河南省濮陽市高二(下)期末數(shù)學(xué)試卷(理科)(解析版)
題型:選擇題
已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( )
A.f(2a)<f(3)<f(log2a)
B.f(3)<f(log2a)<f(2a)
C.f(log2a)<f(3)<f(2a)
D.f(log2a)<f(2a)<f(3)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2013年山東省青島市高考數(shù)學(xué)一模試卷(理科)(解析版)
題型:選擇題
已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( )
A.f(2a)<f(3)<f(log2a)
B.f(3)<f(log2a)<f(2a)
C.f(log2a)<f(3)<f(2a)
D.f(log2a)<f(2a)<f(3)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:單選題
已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f'(x)滿足xf′(x)>2f′(x),若2<a<4則
- A.
f(2a)<f(3)<f(log2a)
- B.
- C.
- D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)(x∈R,且x>0),對于定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),并且x>1時,f(x)>0恒成立.
(1)求f(1);
(2)證明方程f(x)=0有且僅有一個實根;
(3)若x∈[1,+∞)時,不等式f(
)>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
22、已知函數(shù)f(x)定義域為{x|x≠0,x∈R},對定義域內(nèi)的任意x1,x2都有f(x1•x2)=f(x1)+f(x2)且當(dāng)x>1時f(x)>0,
(1)求f(1)與f(-1)值;
(2)求證:f(x)是偶函數(shù);
(3)求證:f(x)在(0,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
(a∈R且x≠a).
(Ⅰ)求證:f(x)+f(2a-x)=-2對定義域內(nèi)的所有x都成立;
(Ⅱ)當(dāng)f(x)的定義域為[a+
,a+1]時,求證:f(x)的值域為[-3,-2];
(Ⅲ)設(shè)函數(shù)g(x)=x
2+|(x-a)•f(x)|,當(dāng)a=-1時,求g(x)的最小值.
查看答案和解析>>