欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若函數(shù)y=ax2+2(a-1)x+2在區(qū)間(-∞,-4)上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.a(chǎn)>0B.0<a<1C.0<a<1或a≥5D.1<a≤5
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=ax2+2(a-1)x+2在區(qū)間(-∞,-4)上是減函數(shù),則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)y=ax2+2(a-1)x+2在區(qū)間(-∞,-4)上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.a(chǎn)>0B.0<a<1C.0<a<1或a≥5D.1<a≤5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
a
x
(x>0)有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
b2
x
(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(x>0,常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并用定義證明(若有多個單調(diào)區(qū)間,請選擇一個證明);
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(x>0,常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax2+4x

(I)若曲線y=f(x)在點(1,f(1))處的切線的傾斜角為
π
4
,求實數(shù)a的值;
(II)若函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2-bx
(a,b∈R)
(1)若y=f(x)圖象上的點(1,-
11
3
)
處的切線斜率為-4,求y=f(x)的極大值;
(2)若y=f(x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a、b∈R).
(1)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a=1,函數(shù)f(x)的圖象能否總在直線y=b的下方?說明理由;
(3)若函數(shù)f(x)在[0,2]上是增函數(shù),x=2是方程f(x)=0的一個根,求證:f(1)≤-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c圖象上一點M(1,m)處的切線方程為y-2=0,其中a,b,c為常數(shù).
(Ⅰ)函數(shù)f(x)是否存在單調(diào)減區(qū)間?若存在,則求出單調(diào)減區(qū)間(用a表示);
(Ⅱ)若x=1不是函數(shù)f(x)的極值點,求證:函數(shù)f(x)的圖象關于點M對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
13
x3+ax2-bx(a,b∈R),若y=f(x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),則b-a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(Ⅲ)若對任意x1,x2∈(0,+∞),當x1≠x2時有
f(x1)+2x1-[f(x2)+2x2]x1-x2
>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f (1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.

查看答案和解析>>


同步練習冊答案