欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知m,n∈R,則“m?n<0”是“方程
x2
m
+
y2
n
=1
表示雙曲線”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件
C
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n∈R,則“m•n<0”是“方程
x2
m
+
y2
n
=1
表示雙曲線”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m,n∈R,則“m•n<0”是“方程
x2
m
+
y2
n
=1
表示雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知m,n∈R,則“m•n<0”是“方程數(shù)學(xué)公式表示雙曲線”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充分必要條件
  4. D.
    既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:數(shù)學(xué)公式在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得數(shù)學(xué)公式.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),數(shù)學(xué)公式(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)f(x)=2-x-1-3,x∈R,,有下列說法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若關(guān)于x的方程f2(x)+8f(x)-m=0有實(shí)數(shù)解,則m≥-16;
③當(dāng)k=0時(shí),若g(x)≤m有解,則m的取值范圍為[0,+∞);若g(x)<m恒成立,則m的取值范圍為[1,+∞);
④若k=2,則函數(shù)h(x)=g(x)-2x在區(qū)間[0,n](n∈N*)上有n+1個(gè)零點(diǎn).
其中你認(rèn)為正確的所有說法的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)f(x)=2-x-1-3,x∈R,,有下列說法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若關(guān)于x的方程f2(x)+8f(x)-m=0有實(shí)數(shù)解,則m≥-16;
③當(dāng)k=0時(shí),若g(x)≤m有解,則m的取值范圍為[0,+∞);若g(x)<m恒成立,則m的取值范圍為[1,+∞);
④若k=2,則函數(shù)h(x)=g(x)-2x在區(qū)間[0,n](n∈N*)上有n+1個(gè)零點(diǎn).
其中你認(rèn)為正確的所有說法的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省廣州六中高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)f(x)=2-x-1-3,x∈R,數(shù)學(xué)公式,有下列說法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若關(guān)于x的方程f2(x)+8f(x)-m=0有實(shí)數(shù)解,則m≥-16;
③當(dāng)k=0時(shí),若g(x)≤m有解,則m的取值范圍為[0,+∞);若g(x)<m恒成立,則m的取值范圍為[1,+∞);
④若k=2,則函數(shù)h(x)=g(x)-2x在區(qū)間[0,n](n∈N*)上有n+1個(gè)零點(diǎn).
其中你認(rèn)為正確的所有說法的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)已知O為坐標(biāo)原點(diǎn),圓心為M的圓的參數(shù)方程為
x=2+
2
cosθ
y=2+
2
sinθ
(θ∈R)
,點(diǎn)N為圓M上的任意一點(diǎn),則<
OM
,
ON
>的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文科做)已知O為坐標(biāo)原點(diǎn),圓心為M的圓的參數(shù)方程為
x=2+
2
cosθ
y=2+
2
sinθ
(θ∈R)
,點(diǎn)N為圓M上的任意一點(diǎn),則<
OM
,
ON
>的取值范圍是( 。
A.(0,
π
6
)
B.(0,
π
6
]
C.[0,
π
6
]
D.[
π
6
,
π
4
]

查看答案和解析>>


同步練習(xí)冊答案