已知圓的方程為x2+y2=1,把圓上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到一橢圓,則以該橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程為( 。| A.-y2=1 | B.-x2= | C.-y2= | D.-x2=1 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知圓的方程為x2+y2=1,把圓上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到一橢圓,則以該橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程為( 。
| | | |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知圓的方程為x
2+y
2=1,把圓上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到一橢圓,則以該橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程為( 。
| A.-y2=1 | B.-x2= | C.-y2= | D.-x2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2004-2005學(xué)年廣東省深圳市實(shí)驗(yàn)學(xué)校高二(上)期末數(shù)學(xué)試卷(解析版)
題型:選擇題
已知圓的方程為x
2+y
2=1,把圓上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到一橢圓,則以該橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程為( )
A.

B.

C.

D.

查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:單選題
已知圓的方程為x2+y2=1,把圓上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到一橢圓,則以該橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程為
- A.
- B.
- C.
- D.
查看答案和解析>>