定義在R上的函數(shù)f(x)滿足f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù).給出下列結(jié)論: ①函數(shù)f(x)的最小正周期為4; ②函數(shù)f(x)的圖象關(guān)于(1,0)對稱; ③函數(shù)f(x)的圖象關(guān)于x=2對稱; ④函數(shù)f(x)的最大值為f(2). 其中正確命題的序號(hào)是( ) |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),且當(dāng)x∈[-1,1]時(shí),f(x)=x3.
(1)求f(x)在[1,5]上的表達(dá)式;
(2)若A={x|f(x)>a,x∈R},且A≠∅,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
12、定義在R上的函數(shù)f(x)滿足f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù).給出下列結(jié)論:
①函數(shù)f(x)的最小正周期為4;
②函數(shù)f(x)的圖象關(guān)于(1,0)對稱;
③函數(shù)f(x)的圖象關(guān)于x=2對稱;
④函數(shù)f(x)的最大值為f(2).其中正確命題的序號(hào)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)滿足f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù).給出下列結(jié)論:
①函數(shù)f(x)的最小正周期為2;
②函數(shù)f(x)的圖象關(guān)于(1,0)對稱;
③函數(shù)f(x)的圖象關(guān)于x=2對稱;
④函數(shù)f(x)的最大值為f(2).
其中正確命題的序號(hào)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[0,2]時(shí),
f(x)=()|x-m|.
(1)求m的值;
(2)設(shè)函數(shù)g(x)=log
2x,判斷函數(shù)F(x)=f(x)-g(x)零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)恒成立,當(dāng)x∈(0,2]時(shí),f(x)=2x,則f(1og26)的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)滿足f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù),對于下列命題:
①函數(shù)f(x)是以T=2為周期的函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對稱;
③函數(shù)f(x)的圖象關(guān)于直線x=2對稱;
④函數(shù)f(x)的最大值為f(2);
⑤f(2013)=0.
其中正確的序號(hào)為
②③⑤
②③⑤
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),且當(dāng)x∈[-1,1]時(shí),f(x)=x3.
(1)求f(x)在[1,5]上的表達(dá)式;
(2)若A={x|f(x)>a,x∈R},且A≠∅,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)+1,且x∈[0,1]時(shí),f(x)=4
x,x∈(1,2)時(shí),
f(x)=,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)為
5
5
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年湖南省長沙市田家炳實(shí)驗(yàn)中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[0,2]時(shí),

.
(1)求m的值;
(2)設(shè)函數(shù)g(x)=log
2x,判斷函數(shù)F(x)=f(x)-g(x)零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年湖南省長沙市田家炳實(shí)驗(yàn)中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[0,2]時(shí),

.
(1)求m的值;
(2)設(shè)函數(shù)g(x)=log
2x,判斷函數(shù)F(x)=f(x)-g(x)零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>