欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

A(-4,-5),B(-6,-5),則AB等于( 。
A.4B.2C.5D.3
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担
對于任意正實數(shù)a、b,可作如下變形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab
,
又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,當(dāng)且僅當(dāng)a、b滿足
 
時,a+b有最小值2
p

(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥2
ab
成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)y=
4
x
的圖象上一點,A點的橫坐標(biāo)為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)在生活中需測量一些球的足球、籃球)的直徑.某校研究性學(xué)習(xí)小組,通過實驗發(fā)現(xiàn)下面的測量方法:如圖,將球放在水平的桌面上,在陽光的斜射下,得到球的影子AB,設(shè)光線DA、CB分別與球相切于點E、F,則EF即為球精英家教網(wǎng)的直徑.若測得AB的長為41.5cm,∠ABC=37°.請你計算出球的直徑(精確到1cm);





(2)有一特殊材料制成的質(zhì)量為30克的泥塊,現(xiàn)把它切開為大小兩塊,將較大泥塊放在一架不等臂天平的左盤中,稱得質(zhì)量為27克;又將較小泥塊放在該天平的右盤中,稱得質(zhì)量為8克.若只考慮該天平的臂長不等,其他因素忽略不計,請你依據(jù)杠桿的平衡原理,求出較大泥塊和較小泥塊的質(zhì)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、(1)如圖1,在正方形ABCD中,點E、F分別在邊BC、CD上,AE、BF 交于點O,∠AOF=90°.求證:BE=CF.
(2)如圖2,在正方形ABCD中,點E、H、F、G分別在邊AB、BC、CD、DA上,
EF、GH交于點O,∠FOH=90°,EF=4.求GH的長.
(3)已知點E、H、F、G分別在矩形ABCD的邊AB、BC、CD、DA上,EF、GH交于點O,∠FOH=90°,EF=4.直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,則GH=

②如圖4,矩形ABCD由n個全等的正方形組成,則GH=
(用n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)方程x2+px+1997=0恰有兩個正整數(shù)根x1,x2,則
p
(x1+1)(x2+1)
的值是
 

(2)已知k為整數(shù),且關(guān)于x的方程(k2-1)x2-3(3k-1)x+18=0有兩個不相同的正整數(shù)根,則k=
 

(3)兩個質(zhì)數(shù)a,b恰好是關(guān)于x的方程x2-21x+t=0的兩個根,則
b
a
+
a
b
=
 

(4)方程x2+px+q=0的兩個根都是正整數(shù),并且p+q=1992,則方程較大根與較小根的比等于
 

(5)已知方程(a2-1)x2-2(5a+1)x+24=0有兩個不相等的負(fù)整數(shù)根,則整數(shù)a的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、(1)如圖①,A,B,C三點在一直線上,分別以AB,BC為邊在AC同側(cè)作等邊△ABD和等邊△BCE,AE交BD于點F,DC交BE于點G.則AE=DC嗎?BF=BG嗎?請說明理由;
(2)如圖②,若A,B,C不在同一直線上,那么這時上述結(jié)論成立嗎?若成立請證明;
(3)在圖①中,若連接F,G,你還能得到什么結(jié)論?(寫出結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察發(fā)現(xiàn):
如圖1,若點A,B在直線l同側(cè),在直線l上找一點P,使AP+BP的值最。
做法如下:作點B關(guān)于直線l的對稱點B',連接AB',與直線l的交點就是所求的點P
再如圖2,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.
做法如下:作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為
 

精英家教網(wǎng)
(2)實踐運用
如圖3,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值.精英家教網(wǎng)
(3)拓展延伸
如圖4,在四邊形ABCD的對角線AC上找一點F,使∠AFB=∠AFD.保留作圖痕跡,不必寫出作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,在等腰三角形ABC中,AB=AC,AD是BC邊上的中線,∠ABC的平分線BG,交AD于點E,EF⊥AB,垂足為F.
①若∠BAD=20°,則∠C=
70°
70°

②求證:EF=ED.
(2)如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
①求∠ECD的度數(shù);
②若CE=5,求BC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(貴州六盤水卷)數(shù)學(xué)(帶解析) 題型:解答題

(1)觀察發(fā)現(xiàn)
如圖(1):若點A、B在直線m同側(cè),在直線m上找一點P,使AP+BP的值最小,做法如下:
作點B關(guān)于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.
如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:
作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為     
(2)實踐運用
如圖(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為     
(3)拓展延伸
如圖(4):點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省湖州八中七年級第二學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

(1)觀察發(fā)現(xiàn)
如題(a)圖,若點A,B在直線同側(cè),在直線上找一點P,使AP+BP的值最。
做法如下:作點B關(guān)于直線的對稱點,連接,與直線的交點就是所求的點P
再如題(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
做法如下:作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為     .  
   
(2)實踐運用
如題(c)圖,已知⊙O的直徑CD為4,AD的度數(shù)為60°,點B是弧AD的中點,在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.

(3)拓展延伸
如題(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(貴州六盤水卷)數(shù)學(xué)(解析版) 題型:解答題

(1)觀察發(fā)現(xiàn)

如圖(1):若點A、B在直線m同側(cè),在直線m上找一點P,使AP+BP的值最小,做法如下:

作點B關(guān)于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:

作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為     

(2)實踐運用

如圖(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為     

(3)拓展延伸

如圖(4):點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

 

查看答案和解析>>


同步練習(xí)冊答案