| 已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( 。 |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年山東省青島市即墨市高三(上)期末數(shù)學(xué)試卷(理科)(解析版)
題型:選擇題
已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( )
A.2
B.-2
C.1
D.-1
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年山東省青島市即墨市高三(上)期末數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( )
A.2
B.-2
C.1
D.-1
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=ax2+bx+1(a≠0)對于任意x∈R都有f(1+x)=f(1-x),且函數(shù)y=f(x)+2x為偶函數(shù);函數(shù)g(x)=1-2x.
(I) 求函數(shù)f(x)的表達(dá)式;
(II) 求證:方程f(x)+g(x)=0在區(qū)間[0,1]上有唯一實(shí)數(shù)根;
(III) 若有f(m)=g(n),求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=2x+1定義在R上.
(1)若存在,使得f(x)+f(-x)=a成立,求實(shí)數(shù)a的取值范圍;
(2)若可以表示為一個(gè)偶函數(shù)g(x)與一個(gè)奇函數(shù)h(x)之和,設(shè)h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(3)若對任意x∈[1,2]都有p(t)≥m2-m-1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)為R上的偶函數(shù),對任意x∈R都有f(x+6)=f(x)+f(3)且當(dāng)x
1,x
2∈[0,3],x
1≠x
2時(shí),有
>0成立,給出四個(gè)命題:
①f(3)=0; ②直線x=-6是函數(shù)y=f(x)的圖象的一條對稱軸;
③函數(shù)y=f(x)在[-9,-6]上為增函數(shù); ④函數(shù)y=f(x)在[-9,9]上有四個(gè)零點(diǎn).
其中所有正確命題的序號為
①②④
①②④
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=ax2+bx+1(a≠0)對于任意x∈R都有f(1+x)=f(1-x),且函數(shù)y=f(x)+2x為偶函數(shù);函數(shù)g(x)=1-2x.
(I) 求函數(shù)f(x)的表達(dá)式;
(II) 求證:方程f(x)+g(x)=0在區(qū)間[0,1]上有唯一實(shí)數(shù)根;
(III) 若有f(m)=g(n),求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=2x+1定義在R上.
(1)若存在,使得f(x)+f(-x)=a成立,求實(shí)數(shù)a的取值范圍;
(2)若可以表示為一個(gè)偶函數(shù)g(x)與一個(gè)奇函數(shù)h(x)之和,設(shè)h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(3)若對任意x∈[1,2]都有p(t)≥m2-m-1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=ax2+bx+1(a≠0)對于任意x∈R都有f(1+x)=f(1-x),且函數(shù)y=f(x)+2x為偶函數(shù);函數(shù)g(x)=1-2x.
(I) 求函數(shù)f(x)的表達(dá)式;
(II) 求證:方程f(x)+g(x)=0在區(qū)間[0,1]上有唯一實(shí)數(shù)根;
(III) 若有f(m)=g(n),求實(shí)數(shù)n的取值范圍.
查看答案和解析>>