已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為( 。| A.[,) | B.(-,-]∪[,) | | C.[,)∪(,] | D.隨a的值而變化 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為( 。
| |
| |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為( 。
| A.[,) | B.(-,-]∪[,) |
| C.[,)∪(,] | D.隨a的值而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年遼寧省沈陽二中等重點(diǎn)中學(xué)協(xié)作體高考預(yù)測數(shù)學(xué)試卷07(理科)(解析版)
題型:選擇題
已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為( )
A.

B.

C.


D.隨a的值而變化
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:單選題
已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為
- A.
- B.
- C.
- D.
隨a的值而變化
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),并且在[-1,1]上f(x)是增函數(shù),求滿足條件f(1-a)+f(1-a2)≤0的a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=1-2
-x,則不等式f(x)<-
的解集是( 。
| A、(-∞,-1) |
| B、(-∞,-1] |
| C、(1,+∞) |
| D、[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈(0,e]時(shí),f(x)=ax+lnx(其中e是自然界對數(shù)的底,a∈R)
(1)求f(x)的解析式;
(2)設(shè)
g(x)=,x∈[-e,0),求證:當(dāng)a=-1時(shí),
f(x)>g(x)+;
(3)是否存在實(shí)數(shù)a,使得當(dāng)x∈[-e,0)時(shí),f(x)的最小值是3?如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則
f()的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:

12、已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導(dǎo)函數(shù)f′(x)的圖象如圖,則有以下幾個(gè)命題:
(1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
(2)f(x)只在x=-2處取得極大值;
(3)f(x)在x=-2與x=2處取得極大值;
(4)f(x)在x=0處取得極小值.
其中正確命題的個(gè)數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
13、已知函數(shù)f(x) 是定義在R 上的奇函數(shù),且當(dāng)x≥0 時(shí),f(x)=x
2+4x.若f(2-a
2)>f(a),則實(shí)數(shù)a 的取值范圍是
(-2,1)
.
查看答案和解析>>