分析 (1)連接OD,可以得到∠BDC=∠DBC,∠ODB=∠OBD,進(jìn)而得出∠ODC=∠OBC=90°,據(jù)此即可得出證明;
(2)可以先求出∠BOD的度數(shù),由OD=OB,CD=CB,可以證明OC是線段BD的垂直平分線,進(jìn)而求出OD的長,據(jù)此即可得解.
解答 解:(1)如圖,連接OD,
∵AB是⊙O的直徑,BC切⊙O于點(diǎn)B,
∴∠OBC=90°,
∵OD=OB,∴∠ODB=∠OBD,
∵CD=CB,∴∠BDC=∠DBC,
∴∠BDC+∠ODB=∠DBC+∠OBD,
即:∠ODC=∠OBC=90°,
∴CD是⊙O的切線;
![]()
(2)由(1)知,∠ODE=∠ODC,
∵∠E=30°,∴∠EOD=60°,
∴∠DOB=180°-60°=120°,
∵OD=OB,CD=CB,
∴OC是線段BD的垂直平分線,
∴∠ODF=$\frac{1}{2}$∠DOB=$\frac{1}{2}$×120°=60°,
在Rt△OFD中,OF=2,
∴OD=$\frac{2}{cos60°}$=4,DF=2$\sqrt{3}$,
∴DB=4$\sqrt{3}$,
S陰影=S扇形ODB-S△ODB
=$\frac{120•π•{4}^{2}}{360}$-$\frac{1}{2}×4\sqrt{3}×2$
=$\frac{16π}{3}$-$4\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了圓的切線的性質(zhì)與切線的判定,還考查了扇形面積公式,三角形的面積公式等知識(shí)點(diǎn),是基礎(chǔ)題目,要注意總結(jié).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com