分析 延長AD交BC的延長線于點E,根據(jù)∠D=∠B=90°,得到∠EDC=90°,∠DCE=∠A,由tanA=2,求得tan∠ECD=tanA=$\frac{DE}{CD}=\frac{BE}{AB}$=2,推出CE=AB=BC,設(shè)CD=x,則DE=2x,根據(jù)勾股定理得到AB=BC=CE=$\sqrt{D{E}^{2}+C{D}^{2}}$=$\sqrt{5}$x,BE=2$\sqrt{5}$x,然后再根據(jù)勾股定理列方程即可得到結(jié)論.
解答
解:延長AD交BC的延長線于點E,
∵∠B=∠D=90°,
∴∠EDC=90°,∠DCE=∠A,
∵tanA=2,
∴tan∠ECD=tanA=$\frac{DE}{CD}=\frac{BE}{AB}$=2,
∵AB=BC,
∴CE=AB=BC,
設(shè)CD=x,則DE=2x,
∴AB=BC=CE=$\sqrt{D{E}^{2}+C{D}^{2}}$=$\sqrt{5}$x,
∴BE=2$\sqrt{5}$x,
∵AB2+BE2=AE2,
即($\sqrt{5}$x)2+(2$\sqrt{5}$x)2=(7+2x)2,
解得:x=$\frac{7}{3}$(負值舍去),
∴CD的長是$\frac{7}{3}$.
點評 本題考查的是解直角三角形,勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com