【題目】在△ABC與△ABD中,∠DBA=∠CAB,AC與BD交于點(diǎn)F
![]()
(1)如圖1,若∠DAF=∠CBF,求證:AD=BC;
(2)如圖2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的長(zhǎng).
(3)如圖3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接寫(xiě)出DB的長(zhǎng).
【答案】(1)證明見(jiàn)講解;(2)
;(3)![]()
【解析】
(1)證明
,即可得出
;
(2)在
上取一點(diǎn)
,使得
,由(1)知,
,得出
,
,
,證出
,
,得出
,進(jìn)而得出答案;
(3)在
上取一點(diǎn)
,使得
,由(1)知
,得出
,
,證出
,
,
,
,證明
,得出
,求出
的長(zhǎng),進(jìn)而得出答案.
(1)證明:
,
,
,
在
和
中,
,
,
;
(2)解:在
上取一點(diǎn)
,使得
,如圖2所示:
![]()
由(1)知,
,
,
,
,
,
,
,
,
,
,
,
,
.
(3)解:在
上取一點(diǎn)
,使得
,如圖3所示:
![]()
由(1)知
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
![]()
,
,
,
,即
,
解得:
(負(fù)值已舍去),
![]()
,
![]()
,
![]()
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)草莓采摘園為吸引顧客,在草莓銷(xiāo)售價(jià)格相同的基礎(chǔ)上分別推出優(yōu)惠方案,甲園:顧客進(jìn)園需購(gòu)買(mǎi)門(mén)票,采摘的草莓按六折優(yōu)惠.乙園:顧客進(jìn)園免門(mén)票,采摘草莓超過(guò)一定數(shù)量后,超過(guò)的部分打折銷(xiāo)售.活動(dòng)期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費(fèi)用y1元,若在乙園采摘需總費(fèi)用y2元, y1,y2與x之間的函數(shù)圖象如圖所示,則下列說(shuō)法中錯(cuò)誤的是( )
![]()
A.甲園的門(mén)票費(fèi)用是60元
B.草莓優(yōu)惠前的銷(xiāo)售價(jià)格是40元/kg
C.乙園超過(guò)5 kg后,超過(guò)的部分價(jià)格優(yōu)惠是打五折
D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費(fèi)用相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB⊥AC,AB=3,AD=5,點(diǎn)P在邊AD上運(yùn)動(dòng),以P為圓心,PA為半徑的⊙P與對(duì)角線AC交于A,E兩點(diǎn).
(1)如圖2,當(dāng)⊙P與邊CD相切于點(diǎn)F時(shí),求AP的長(zhǎng);
(2)不難發(fā)現(xiàn),當(dāng)⊙P與邊CD相切時(shí),⊙P與平行四邊形ABCD的邊有三個(gè)公共點(diǎn),隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個(gè)數(shù)也在變化,若公共點(diǎn)的個(gè)數(shù)為4,直接寫(xiě)出相對(duì)應(yīng)的AP的值的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
的平分線過(guò)點(diǎn)
,以
點(diǎn)為圓心的圓與
相切于點(diǎn)
,
為
的直徑.
![]()
(1)求證:
是
的切線;
(2)若
,
,求
;
(3)若
的半徑為
,
,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,過(guò)點(diǎn)A作AH⊥BC,分別交BD,BC于點(diǎn)E,H,F為ED的中點(diǎn),∠BAF=120°,則∠C的度數(shù)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB經(jīng)過(guò)⊙O的圓心O,交⊙O于A、C兩點(diǎn),BC=1,AD為⊙O的弦,連結(jié)BD,∠BAD=∠ABD=30°.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】只有1和它本身兩個(gè)因數(shù)且大于1的正整數(shù)叫做素?cái)?shù).我國(guó)數(shù)學(xué)家陳景潤(rùn)哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)都表示為兩個(gè)素?cái)?shù)的和”,如10=3+7.
(1)從7,11,13,17這4個(gè)素?cái)?shù)中隨機(jī)抽取一個(gè),則抽到的數(shù)是11的概率是_____;
(2)從7,11,13,17這4個(gè)素?cái)?shù)中隨機(jī)抽取1個(gè)數(shù),再?gòu)挠嘞碌?/span>3個(gè)數(shù)中隨機(jī)抽取1個(gè)數(shù),用畫(huà)樹(shù)狀圖或列表的方法,求抽到的兩個(gè)素?cái)?shù)之和等于24的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-1.5,0),B(0,2),將△ABO順著x軸的正半軸無(wú)滑動(dòng)的滾動(dòng),第一次滾動(dòng)到①的位置,點(diǎn)B的對(duì)應(yīng)點(diǎn)記作B1;第二次滾動(dòng)到②的位置,點(diǎn)B1的對(duì)應(yīng)點(diǎn)記作B2;第三次滾動(dòng)到③的位置,點(diǎn)B2的對(duì)應(yīng)點(diǎn)記作B3;
;依次進(jìn)行下去,則點(diǎn)B2020的坐標(biāo)為__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
的圖象與
軸交于
兩點(diǎn),與
軸交于
點(diǎn),點(diǎn)
在直線
上,橫坐標(biāo)為
.
(1)確定二次函數(shù)
的解析式;
(2)如圖1,
時(shí),
交二次函數(shù)
的圖象于點(diǎn)
的面積記作
為何值時(shí)
的值最大,并求出
的最大值;
![]()
![]()
(3)如圖2,過(guò)點(diǎn)
作
軸的平行線交二次函數(shù)
的圖象于點(diǎn)
點(diǎn)
與點(diǎn)
關(guān)于直線
對(duì)稱(chēng)是否存在點(diǎn)
使四邊形
為菱形,若存在直接寫(xiě)出
的值;若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com