分析 (1)連接OP,根據(jù)等腰三角形的性質(zhì)得到∠A=∠APO,根據(jù)垂直的定義得到∠A+∠AEC=90°,等量代換得到∠AEC=∠FPE,于是得到OP⊥PF,根據(jù)切線的判定定理即可得到結(jié)論;
(2)根據(jù)菱形的性質(zhì)得到PB=OB,推出△OPB是等邊三角形,得到∠B=∠BOP=60°,于是得到△FPE是等邊三角形,根據(jù)等邊三角形的性質(zhì)即可得到結(jié)論.
解答
證明:(1)連接OP,
∵OP=OA,
∴∠A=∠APO,
∵EC⊥AB,
∴∠A+∠AEC=90°,
∵∠FPE=∠FEP,∠FEP=∠AEC,
∴∠AEC=∠FPE,
∴∠OPA+∠FPA=90°,
∴OP⊥PF,
∴FP是⊙O的切線;
(2)∵四邊形OBPD是菱形,
∴PB=OB,
∵OB=OP,
∴OP=OB=PB,
∴△OPB是等邊三角形,
∴∠B=∠BOP=60°,
∴∠A=30°,
∴∠AEC=∠FEP=60°,
∴∠FPE=∠FEP=60°,
∴△FPE是等邊三角形,
∵PD∥AB,
∴PD⊥EF,
∴FD=ED.
點(diǎn)評(píng) 本題考查了切線的判定,菱形的性質(zhì),等邊三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com