【題目】如圖,
中,
,
,
,
為半圓
的直徑,將
沿射線
方向平移得到△A1B1C1.當(dāng)
與半圓
相切于點(diǎn)
時(shí),平移的距離的長(zhǎng)為__________.
![]()
【答案】![]()
【解析】
如圖,連接OD,根據(jù)切線性質(zhì)可得∠ODB1=90°,根據(jù)平移的性質(zhì)可得∠B1=∠ABC,利用勾股定理可求出BC的長(zhǎng),即可求出半圓的半徑,利用∠B1的正弦即可求出OB1的長(zhǎng),即可求出平移距離BB1的長(zhǎng).
如圖,連接OD,
∵
,
,
,
∴BC=
=4,
∵BC為半圓
的直徑,
∴OD=OB=
BC=2,
∵半圓
相切于點(diǎn)
,
∴OD⊥A1B1,
∵將
沿射線
方向平移得到△A1B1C1,
∴∠B1=∠ABC,
∴sin∠B1=sin∠ABC=
=
,
∴OB1=
=
,
∴BB1=OB1-OB=
-2=
,即平移的距離的長(zhǎng)為
.
![]()
故答案為:![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
與
軸交于
,
兩點(diǎn),且
,
兩點(diǎn)均在直線
的下方,那么下列說法正確的是( )
A.拋物線開口一定向上B.拋物線的頂點(diǎn)不可能在第四象限
C.拋物線與已知直線有兩個(gè)交點(diǎn)D.拋物線的對(duì)稱軸可能在
軸右側(cè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下表,從左邊第一個(gè)格子開始向右數(shù),在每個(gè)小格子中都填入一個(gè)整數(shù),使得其中仼意三個(gè)相鄰格子中所填整數(shù)之和都相等.
|
|
|
| 5 | 4 | …… |
(1)可求得
_____;
_____;
_____.
(2)第2019個(gè)格子中的數(shù)為______;
(3)前2020個(gè)格子中所填整數(shù)之和為______.
(4)前
個(gè)格子中所填整數(shù)之和是否可能為2020?若能,求出
的值,若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了“3D”打印、數(shù)學(xué)史、詩(shī)歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對(duì)這四門校本課程的喜愛情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計(jì)圖.
![]()
![]()
請(qǐng)您根據(jù)圖中提供的信息回答下列問題:
(1)統(tǒng)計(jì)圖中的a= ,b= ;
(2)“D”對(duì)應(yīng)扇形的圓心角為 度;
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)您估計(jì)該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門校本課程中隨機(jī)選取一門,請(qǐng)用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.
(1)請(qǐng)用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.
(2)若已確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線
的拋物線經(jīng)過
、
兩點(diǎn),與
軸的另一個(gè)交點(diǎn)為
,點(diǎn)
在
軸上,且
.
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)
的橫坐標(biāo)為
.
①當(dāng)
時(shí),求四邊形
的面積
與
的函數(shù)關(guān)系式,并求出
的最大值;
②點(diǎn)
在直線
上,若以
為邊,點(diǎn)
、
、
、
為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)
的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上的動(dòng)點(diǎn),且滿足S△PAO=2S△PCO,求出P點(diǎn)的坐標(biāo);
(3)連接BC,點(diǎn)E是x軸一動(dòng)點(diǎn),點(diǎn)F是拋物線上一動(dòng)點(diǎn),若以B、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)F的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:
![]()
圖1 圖2 圖3
(1)初步思考:
如圖1, 在
中,已知
,BC=4,N為BC上一點(diǎn)且
,試說明:![]()
(2)問題提出:
如圖2,已知正方形ABCD的邊長(zhǎng)為4,圓B的半徑為2,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),求
的最小值.
(3)推廣運(yùn)用:
如圖3,已知菱形ABCD的邊長(zhǎng)為4,∠B﹦60°,圓B的半徑為2,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),求
的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓圓O的直徑,C是弧AB的中點(diǎn),M是弦AC的中點(diǎn),CH⊥BM,垂足為H.求證
(1)∠AHO=90°
(2)求證:CH=AHOH.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com