欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(2,8),交x軸于點(diǎn)A (6,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)Q (x,0)是線段OA上的一動(dòng)點(diǎn),過(guò)Q點(diǎn)作x軸的垂線,交拋物線于P點(diǎn),交直線BA于D點(diǎn),求PD與x之間的函數(shù)關(guān)系式并求出PD的最大值;
(3)x軸上是否存在一點(diǎn)Q,過(guò)點(diǎn)Q作x軸的垂線,交拋物線于P點(diǎn),交直線BA于D點(diǎn),使以PD為直徑的圓與y軸相切?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

分析 (1)用待定系數(shù)法求出拋物線解析式,進(jìn)而得出點(diǎn)B坐標(biāo),再用待定系數(shù)法求出直線AB解析式;
(2)借助(1)的結(jié)論,先建立PD與x的函數(shù)關(guān)系式,即可確定出最大值;
(3)借助(2)的結(jié)論,利用圓心到y(tǒng)軸的距離等于半徑即可建立方程,解方程即可得出結(jié)論.

解答 解:(1)∵拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(2,8),
∴設(shè)拋物線的解析式為y=a(x-2)2+8,
∵點(diǎn)A在拋物線上,
∴a(6-2)2+8=0,
∴a=-$\frac{1}{2}$,
∴拋物線的解析式為y=-$\frac{1}{2}$(x-2)2+8=-$\frac{1}{2}$x2+2x+6,
∴B(0,6),
∵A (6,0),
∴直線AB的解析式為y=-x+6;
(2)由(1)知,拋物線的解析式為y=-$\frac{1}{2}$x2+2x+6,直線AB的解析式為y=-x+6;
∵Q點(diǎn)作x軸,Q (x,0),
∴P(x,-$\frac{1}{2}$x2+2x+6),D(x,-x+6),
∴PD=|-$\frac{1}{2}$x2+2x+6-(-x+6)|=|-$\frac{1}{2}$x2+3x|,
∵Q (x,0)是線段OA上的一動(dòng)點(diǎn),
∴0≤x≤6,
∴PD=-$\frac{1}{2}$x2+3x=-$\frac{1}{2}$(x2-6x)=-$\frac{1}{2}$(x-3)2+$\frac{9}{2}$,
∴當(dāng)x=3時(shí),PD最大,最大值是$\frac{9}{2}$,
(3)由(2)知,P(x,-$\frac{1}{2}$x2+2x+6),D(x,-x+6),
∴以PD為直徑的圓的圓心的橫坐標(biāo)為x,
由(2)知,PD=|-$\frac{1}{2}$x2+3x|,
∵以PD為直徑的圓與y軸相切,
∴|x|=$\frac{1}{2}$|-$\frac{1}{2}$x2+3x|,
∴x=0(舍)或x=2或x=10,
∴Q(2,0)或(10,0).

點(diǎn)評(píng) 此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,平行于坐標(biāo)軸上的直線上兩點(diǎn)間的距離,函數(shù)的極值,解絕對(duì)值方程,建立PD與x的函數(shù)關(guān)系式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系中,OA=OB=OC=6,點(diǎn)G的線段OB上的一個(gè)動(dòng)點(diǎn),連接AG并延長(zhǎng)BC于點(diǎn)D.
(1)當(dāng)點(diǎn)G運(yùn)動(dòng)到何處時(shí)△ABD的面積為△ABC面積的$\frac{1}{3}$;
(2)在(1)的條件下,過(guò)點(diǎn)B作BE⊥AD,交AC于F,垂足為E,求點(diǎn)F的坐標(biāo);
(3)在(1)和(2)的條件下,在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)P,使△BFP為以邊BF為直角邊的等腰直角三角形?若存在,直接寫(xiě)出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知拋物線y=ax2+bx+4與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(-1,0),過(guò)x軸上一點(diǎn)E作EG⊥x軸交拋物線于點(diǎn)G,交直線AC于點(diǎn)F.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo)(0,4);
(2)如圖,當(dāng)點(diǎn)A在x軸的正半軸上,且直線EG為拋物線的對(duì)稱軸時(shí),過(guò)C作CH⊥GE交GE于H點(diǎn),若$\frac{FH}{FE}$=$\frac{3}{5}$,求拋物線的表達(dá)式;
(3)連接CG,當(dāng)△CGF為等腰直角三角形時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到△ACD,延長(zhǎng)AD、BC交于點(diǎn)E,則DE的長(zhǎng)是4$\sqrt{3}$-4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,直角坐標(biāo)系中,點(diǎn)A(0,a),點(diǎn)B(b,0),若a、b滿足(a-b-8)2+|2a+b-4|=0,C是B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn).
(1)求出C點(diǎn)的坐標(biāo);
(2)如圖1,動(dòng)E點(diǎn)從B點(diǎn)出發(fā),沿BA方向向A點(diǎn)勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)F以相同的速度,從C點(diǎn)出發(fā),在AC延長(zhǎng)線上沿AC方向運(yùn)動(dòng),EF與BC交點(diǎn)為M,當(dāng)E運(yùn)動(dòng)到A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),在此過(guò)程中,EM與FM的大小關(guān)系是否不變?請(qǐng)說(shuō)明理由;
(3)如圖2,在(2)的條件下,過(guò)M作MN⊥EF交y軸于點(diǎn)N,N點(diǎn)的位置是否改變?若不改變,請(qǐng)求出N點(diǎn)的坐標(biāo),若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,P為邊長(zhǎng)為6的正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),Q在CD上,且CQ=BP,連接AP、BQ,將△BQC沿BQ所在的直線翻折得到△BQE,延長(zhǎng)QE交BA的延長(zhǎng)線于點(diǎn)F.
(1)試探究AP與BQ的數(shù)量與位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)E是FQ的中點(diǎn)時(shí),求BP的長(zhǎng);
(3)若BP=2PC,求QF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點(diǎn),過(guò)點(diǎn)A作AD⊥BP于點(diǎn)D,交直線BC于點(diǎn)Q.

(1)如圖1,當(dāng)P在線段AC上時(shí),求證:BP=AQ;
(2)如圖2,當(dāng)P在線段CA的延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?成立(填“成立”或“不成立”)
(3)在(2)的條件下,當(dāng)∠DBA=22.5°度時(shí),存在AQ=2BD,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8,半徑為$\sqrt{3}$的⊙M與射線BA相切,切點(diǎn)為N,且AN=3,將Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤180°)
(1)當(dāng)α為60°或120°時(shí),AC和⊙M相切;
(2)當(dāng)AC落在AN上時(shí),設(shè)點(diǎn)B,C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)D,E.
①畫(huà)出旋轉(zhuǎn)后的Rt△ADE;(草圖即可)
②Rt△ADE的直角邊DE被⊙M截得的弦PQ的長(zhǎng)為2$\sqrt{2}$;
③判斷Rt△ADE的斜邊AD所在的直線與⊙M的位置關(guān)系,并說(shuō)明理由;
(3)設(shè)點(diǎn)M與AC的距離為x,在旋轉(zhuǎn)過(guò)程中,當(dāng)邊AC與⊙M有一個(gè)公共點(diǎn)時(shí),直接寫(xiě)出x的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在有理數(shù)-0.5、-5、$\frac{5}{3}$中,屬于分?jǐn)?shù)的共有2個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案