欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點A逆時針旋轉30°得到△ACD,延長AD、BC交于點E,則DE的長是4$\sqrt{3}$-4.

分析 作CH⊥AE于H,根據(jù)等腰三角形的性質和三角形內角和定理可計算出∠ACB=$\frac{1}{2}$(180°-∠BAC)=75°,再根據(jù)旋轉的性質得AD=AB=8,∠CAD=∠BAC=30°,則利用三角形外角性質可計算出∠E=45°,接著在Rt△ACH中利用含30度的直角三角形三邊的關系得CH=$\frac{1}{2}$AC=4,AH=$\sqrt{3}$CH=4$\sqrt{3}$,所以DH=AD-AH=8-4$\sqrt{3}$,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH-DH=4$\sqrt{3}$-4.

解答 解:作CH⊥AE于H,如圖,
∵AB=AC=6,
∴∠B=∠ACB=$\frac{1}{2}$(180°-∠BAC)=$\frac{1}{2}$(180°-30°)=75°.
∵將△ABC繞點A逆時針旋轉,使點B落在點C處,此時點C落在點D處,
∴AD=AB=6,∠CAD=∠BAC=30°,
∵∠ACB=∠CAD+∠E,
∴∠E=75°-30°=45°.
在Rt△ACH中,∵∠CAH=30°,
∴CH=$\frac{1}{2}$AC=4,AH=$\sqrt{3}$CH=4$\sqrt{3}$,
∴DH=AD-AH=8-4$\sqrt{3}$,
在Rt△CEH中,∵∠E=45°,
∴EH=CH=4,
∴DE=EH-DH=4-(8-4$\sqrt{3}$)=4$\sqrt{3}$-4.
故答案為$4\sqrt{3}-4$.

點評 本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了解直角三角形,等腰三角形的性質和含30度角的直角三角形的性質.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

6.如圖,在△ABC中,BD是∠ABC的平分線,DE∥BC,BC=7,AE=4,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.如圖1,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉時始終滿足OA•OB=OP2,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點P為∠MON的平分線上一點,以點P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°.求證:∠APB是∠MON的智慧角;
(2)如圖3,C是函數(shù)y=$\frac{3}{x}$(x>0)圖象上的一個動點,過點C的直線CD分別交x軸和y軸于點A,B兩點,且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.如圖,A、B(0,2)兩點關于x軸對稱,點P為x軸正半軸上任意一點.點C在線段PB上,AC交x軸于點M,CD平分∠ACB交x軸于點D.
(1)如圖,若CB=CM,連BD.求證:BD=MD;
(2)在(1)的條件下,連接AD,若點N在線段AM上(不含A、M點)運動,且NE⊥PD于E,NF⊥AD于F.則在N點運動的過程中,NE+NF的值是否發(fā)生變化?若不變,請證明求值;若變化,請求出變化范圍.
(3)若點C在線段PB(不含P、B兩點)運動,其余條件不變,OH∥CD分別交AC、PB于G,H,在C點的運動過程中,$\frac{AC-BH}{CG}$的值是否發(fā)生變化?若不變,證明并求值;若變化,請求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.根據(jù)所給材料完成第(2)、第(3)兩小題.
(1)基礎知識:如圖a,正方形ABCD的一個頂點B在直線EF上,且AE⊥EF,CF⊥EF,顯然,我們可以證明△ABE≌△BCF.
(2)實踐運用:如圖b,銳角△ABC的頂點C是直線l上方的一個動點,運動過程中始終保持∠ACB=45°,A、B點在直線l上,現(xiàn)分別以A、B為直角頂點,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分別過點E、F作直線l的垂線,垂足為M、N.請問在C點的運動過程中,線段EM+FN的值是否改變,說明你的理由.
(3)變化拓展:當圖b中的AB=1,其他條件不變時,隨著C點的變化,△ABC的面積也隨之變化.請直接寫出△ABC面積的最大值為$\frac{\sqrt{2}+1}{4}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

1.如圖,矩形ABCD中,E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于點F.若AB=6,BC=$\sqrt{96}$,則DF的長為      ( 。
A.2B.4C.$\sqrt{6}$D.$2\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.如圖,拋物線頂點坐標為點C(2,8),交x軸于點A (6,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點Q (x,0)是線段OA上的一動點,過Q點作x軸的垂線,交拋物線于P點,交直線BA于D點,求PD與x之間的函數(shù)關系式并求出PD的最大值;
(3)x軸上是否存在一點Q,過點Q作x軸的垂線,交拋物線于P點,交直線BA于D點,使以PD為直徑的圓與y軸相切?若存在,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.在平面直角坐標系中,拋物線y=$\frac{1}{4}$x2-bx+c與x軸交于點A(8,0)、B(2,0)兩點,與y軸交于點C.

(1)如圖1,求拋物線的解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接PB并延長交y軸于點D,若點P的橫坐標為t,CD長為d,求d與t的函數(shù)關系式(并求出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接AC,過點P作PH⊥x軸,垂足為點H,延長PH交AC于點E,連接DE,射線DP關于DE對稱的射線DG交AC于點G,延長DG交拋物線于點F,當點G為AC中點時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.如圖菱形ABCD中,∠ADC=60°,M、N分別為線段AB,BC上兩點,且BM=CN,且AN,CM所在直線相交于E.

(1)填空:∠AEC=∠BAD,AE,CE,DE之間的數(shù)量關系AE+CE=DE;
(2)若M、N分別為線段AB,BC延長線上兩點,其他條件不變,(1)中的結論是否仍然成立?試畫圖并證明之.
(3)若菱形邊長為3,M、N分別為線段AB,BC上兩點時,連接BE,Q是BE的中點,則AQ的取值范圍是$\frac{3}{2}$≤AQ≤$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

同步練習冊答案