欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,已知二次函數(shù)y=a(x-h)2+
3
的圖象經(jīng)過(guò)原點(diǎn)O(0,0),A(2,0).
(1)寫(xiě)出該函數(shù)圖象的對(duì)稱軸;
(2)若將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,試判斷點(diǎn)A′是否為該函數(shù)圖象的頂點(diǎn)?
考點(diǎn):二次函數(shù)的性質(zhì),坐標(biāo)與圖形變化-旋轉(zhuǎn)
專題:
分析:(1)由于拋物線過(guò)點(diǎn)O(0,0),A(2,0),根據(jù)拋物線的對(duì)稱性得到拋物線的對(duì)稱軸為直線x=1;
(2)作A′B⊥x軸與B,先根據(jù)旋轉(zhuǎn)的性質(zhì)得OA′=OA=2,∠A′OA=60°,再根據(jù)含30度的直角三角形三邊的關(guān)系得OB=
1
2
OA′=1,A′B=
3
OB=
3
,則A′點(diǎn)的坐標(biāo)為(1,
3
),根據(jù)拋物線的頂點(diǎn)式可判斷點(diǎn)A′為拋物線y=-
3
(x-1)2+
3
的頂點(diǎn).
解答:解:(1)∵二次函數(shù)y=a(x-h)2+
3
的圖象經(jīng)過(guò)原點(diǎn)O(0,0),A(2,0).
解得:h=1,a=-
3
,
∴拋物線的對(duì)稱軸為直線x=1;

(2)點(diǎn)A′是該函數(shù)圖象的頂點(diǎn).理由如下:
如圖,作A′B⊥x軸于點(diǎn)B,
∵線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,
∴OA′=OA=2,∠A′OA=60°,
在Rt△A′OB中,∠OA′B=30°,
∴OB=
1
2
OA′=1,
∴A′B=
3
OB=
3
,
∴A′點(diǎn)的坐標(biāo)為(1,
3
),
∴點(diǎn)A′為拋物線y=-
3
(x-1)2+
3
的頂點(diǎn).
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì):二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
4ac-b2
4a
),對(duì)稱軸直線x=-
b
2a
,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當(dāng)a>0時(shí),拋物線y=ax2+bx+c(a≠0)的開(kāi)口向上,x<-
b
2a
時(shí),y隨x的增大而減;x>-
b
2a
時(shí),y隨x的增大而增大;x=-
b
2a
時(shí),y取得最小值
4ac-b2
4a
,即頂點(diǎn)是拋物線的最低點(diǎn).②當(dāng)a<0時(shí),拋物線y=ax2+bx+c(a≠0)的開(kāi)口向下,x<-
b
2a
時(shí),y隨x的增大而增大;x>-
b
2a
時(shí),y隨x的增大而減小;x=-
b
2a
時(shí),y取得最大值
4ac-b2
4a
,即頂點(diǎn)是拋物線的最高點(diǎn).也考查了旋轉(zhuǎn)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

不等式組
-x+4<2
x-3≤2
的解集為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知反比例函數(shù)y1=
k
x
的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2).
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)觀察圖象,寫(xiě)出使得y1<y2成立的自變量x的取值范圍;
(3)在x軸的正半軸上存在一點(diǎn)P,且△ABP的面積是6,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)填空:當(dāng)AB:AD=
 
時(shí),四邊形MENF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:(x-1)÷(
2
x+1
-1),其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景:
如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是
 
;

探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=
1
2
∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;
實(shí)際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn).1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知在平行四邊形ABCD中,AB=5,BC=8,cosB=
4
5
,點(diǎn)P是邊BC上的動(dòng)點(diǎn),以CP為半徑的圓C與邊AD交于點(diǎn)E、F(點(diǎn)F在點(diǎn)E的右側(cè)),射線CE與射線BA交于點(diǎn)G.

(1)當(dāng)圓C經(jīng)過(guò)點(diǎn)A時(shí),求CP的長(zhǎng);
(2)連接AP,當(dāng)AP∥CG時(shí),求弦EF的長(zhǎng);
(3)當(dāng)△AGE是等腰三角形時(shí),求圓C的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PQ為圓O的直徑,點(diǎn)B在線段PQ的延長(zhǎng)線上,OQ=QB=1,動(dòng)點(diǎn)A在圓O的上半圓運(yùn)動(dòng)(含P、Q兩點(diǎn)),以線段AB為邊向上作等邊三角形ABC.
(1)當(dāng)線段AB所在的直線與圓O相切時(shí),求△ABC的面積(圖1);
(2)設(shè)∠AOB=α,當(dāng)線段AB、與圓O只有一個(gè)公共點(diǎn)(即A點(diǎn))時(shí),求α的范圍(圖2,直接寫(xiě)出答案);
(3)當(dāng)線段AB與圓O有兩個(gè)公共點(diǎn)A、M時(shí),如果AO⊥PM于點(diǎn)N,求CM的長(zhǎng)度(圖3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)四邊形ABCD是邊長(zhǎng)為1的正方形,以正方形ABCD的對(duì)角線AC為邊作第二個(gè)正方形ACEF,再以第二個(gè)正方形的對(duì)角線AE為邊作第三個(gè)正方形AEGF,如此下去….
(1)記正方形ABCD的邊長(zhǎng)為a1=1,按上述方法所作的正方形的邊長(zhǎng)依次為a2,a3,a4,…,an,求出a4=
 
;
(2)根據(jù)以上規(guī)律寫(xiě)出第n個(gè)正方形的邊長(zhǎng)an的表達(dá)式
 
.(n>=1)(n是自然數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案