分析 由題中條件可得△ABE≌△CBD,得出對應(yīng)邊、對應(yīng)角相等,進(jìn)而得出△BGD≌△BFE,△ABF≌△CGB,再由邊角關(guān)系即可求解題中結(jié)論是否正確,進(jìn)而可得出結(jié)論.
解答 解:∵△ABC與△BDE為等邊三角形,![]()
∴AB=BC,BD=BE,∠ABC=∠DBE=60°,
∴∠ABE=∠CBD,
即AB=BC,BD=BE,∠ABE=∠CBD,故①正確
∴△ABE≌△CBD,
∴AE=CD,∠BDC=∠AEB,
又∵∠DBG=∠FBE=60°,
∴△BGD≌△BFE,
∴BG=BF,∠BFG=∠BGF=60°,故②正確,
∴△BFG是等邊三角形,故⑤正確,
∴FG∥AD,
∵BF=BG,AB=BC,∠ABF=∠CBG=60°,
∴△ABF≌△CGB,
∴∠BAF=∠BCG,
∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,
∴∠AHC=60°,故④正確,
∵∠FGB=∠GBD=60°,
∴FG∥AD,
不妨設(shè)FG⊥BH,則BH⊥AD,易證△ABH≌△DBH,可得AB=BD,顯然與已知條件矛盾,故③錯誤,
故答案為①②④⑤.
點(diǎn)評 本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考?碱}型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3a>3b | B. | a-3>b-3 | C. | -3a>-3b | D. | $\frac{a}{3}$>$\frac{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com