【題目】如圖,圓柱形玻璃杯高為
,底面周長為
,在杯內(nèi)壁離杯底
的點
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁上,它在離杯上沿
且與蜂蜜相對的
處,則螞蟻從外壁
處走到內(nèi)壁
處,至少爬多少厘米才能吃到蜂蜜( )
![]()
A.24B.25C.
D.![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中,連接
點
為
上一點,使得
連接
交
于點
,作
交
的延長線于點
.
![]()
(1)求證:
.
(2)若
求
的長.
(3)在(2)的條件下,將
沿著
對折得到
點
的對應(yīng)點為點
,連接
試求
的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,點C在反比例函數(shù)y=
(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解該校初三學(xué)生居家學(xué)習(xí)期間參加“網(wǎng)絡(luò)自習(xí)室”自主學(xué)習(xí)的情況,隨機抽查了部分學(xué)生在兩周內(nèi)參加“網(wǎng)絡(luò)自習(xí)室”自主學(xué)習(xí)的天數(shù),并用得到的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,回答下列問題.
![]()
(1)補全條形統(tǒng)計圖.
(2)部分學(xué)生在兩周內(nèi)參加“網(wǎng)絡(luò)自習(xí)室”自主學(xué)習(xí)天數(shù)的眾數(shù)為______,中位數(shù)為________;
(3)如果該校初三年級約有
名學(xué)生,請你估計在這兩周內(nèi)全校初三年級可能有多少名學(xué)生參加“網(wǎng)絡(luò)自習(xí)室”自主學(xué)習(xí)的天數(shù)不少于
天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+
x+c經(jīng)過A(4,0),B(1,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)在直線AC上方的拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜市場為指導(dǎo)某種蔬菜的生產(chǎn)和銷售,對往年的市場行情和生產(chǎn)情況進行了調(diào)查,提供的信息如下:
信息1:售價和月份滿足一次函數(shù)關(guān)系,如下表所示.
月份 | … | 3 | 6 | … |
售價 | … | 5 | 3 | … |
信息2:成本和月份滿足二次函數(shù)關(guān)系,并且知道該種蔬菜在6月成本達到最低為1元/千克,9月成本為4元/千克.
根據(jù)以上信息回答下列問題:
(1)在7月,這種蔬菜的成本是多少元每千克?
(2)在過去的一年中,某商家平均每天賣出
該種蔬菜,則哪個月的利潤最大,最大利潤為多少?(一個月按30天計算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù) y=f(x)滿足:對于自變量 x 的取值范圍內(nèi)的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),則稱 f(x)是增函數(shù);
(2)若 x1<x2,都有 f(x1)>f(x2),則稱 f(x)是減函數(shù).
例題:證明函數(shù)f(x)=
(x>0)是減函數(shù).
證明:設(shè) 0<x1<x2,
f(x1)﹣f(x2)=
.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴
>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函數(shù) f(x)=
(x>0)是減函數(shù).
根據(jù)以上材料,解答下面的問題:
已知函數(shù)
.
f(﹣1)=
+(﹣2)=-1,f(﹣2)=
+(﹣4)=
.
(1)計算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函數(shù)
是 函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+5與x軸交于點B,與y軸交于點C.拋物線y=x2+bx+c經(jīng)過點B和點C,與x軸交于另一點A,連接AC.
(1)求拋物線的解析式;
(2)若點Q在直線BC上方的拋物線上,連接QC,QB,當△ABC與△QBC的面積比等于2:3時,直接寫出點Q的坐標:
(3)在(2)的條件下,點H在x軸的負半軸,連接AQ,QH,當∠AQH=∠ACB時,直接寫出點H的坐標.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com