【題目】如圖,在直角三角形ABC中,∠C=90°,AC=2,BC=2
,點(diǎn)O是邊AB上的一個動點(diǎn),以點(diǎn)O為圓心,OA為半徑作⊙O,與邊AC交于點(diǎn)M.
![]()
(1)如圖1,當(dāng)⊙O經(jīng)過點(diǎn)C時,⊙O的直徑是 ;
(2)如圖2,當(dāng)⊙O與邊BC相切時,切點(diǎn)為點(diǎn)N,試求⊙O與△ABC重合部分的面積;
(3)如圖3,當(dāng)⊙O與邊BC相交時,交點(diǎn)為E、F,設(shè)CM=x,就判斷AEAF是否為定值,若是,求出這個定值;若不是,請用含x的代數(shù)式表示.
【答案】(1)4;(2)
;(3)不是定值,理由見解析
【解析】
(1)由AB是圓的直徑知∠C=90°,再根據(jù)勾股定理求解可得;
(2)連結(jié)ON,OM,先證tan∠B=
知∠B=30°,∠A=60°,∠BON=60°,∠AON=120°,設(shè)ON=OA=r,證△OBN∽△ABC得
,據(jù)此求出r的值,再計(jì)算出2S扇形MON和S△AOM,從而得出答案;
(3)設(shè)⊙O與AB的另一交點(diǎn)為G,連結(jié)GE,OM,證△AGE∽△AFC得
,由AC=2,CM=x知AM=2﹣x,再證∠AOM=60°得OA=AM=2﹣x,AG=2AO=4﹣2x,從而知AEAF=ACAG=8﹣4x,據(jù)此得出答案.
(1)∵AB是圓的直徑,
∴∠C=90°,
∵AC=2,BC=2
,
∴AB=4故答案為4;
(2)如圖2,連結(jié)ON,OM,
![]()
∵⊙O與邊BC相切于點(diǎn)N,
∴ON⊥BC
在Rt△ABC中,∠C=90°,AC=2,BC=2
,
∴tan∠B=
,
∴∠B=30°,∠A=60°,∠BON=60°,∠AON=120°,
∵OA=OM,
∴∠OMA=∠A=60°,
∴∠AOM=60°,∠MON=60°,
設(shè)ON=OA=r,
∵∠BNO=∠C=90°,∠B=∠B,
∴△OBN∽△ABC,
∴
,即
,
解得r=
,
∴2S扇形MON=
,
∵S△AOM=
,
∴⊙O與△ABC重合部分的面積是
.
(3)AEAF不為定值,理由如下:
如圖3,設(shè)⊙O與AB的另一交點(diǎn)為G,連結(jié)GE,OM,
![]()
∵AG是⊙O的直徑,
∴∠GEA=90°=∠C,
在圓內(nèi)接四邊形AGEF中,∠AGE+∠AFE=180°,
∵∠AFC+∠AFE=180°,
∴∠AGE=∠AFC,
∴△AGE∽△AFC,
∴
,
∵AC=2,CM=x,
∴AM=2﹣x,
∵∠OMA=∠OAM=60°,
∴∠AOM=60°,
∴OA=AM=2﹣x,
AG=2AO=4﹣2x,
∴AEAF=ACAG=8﹣4x,
∵x不是定值
∴AEAF不是定值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,sinB=
,點(diǎn)D在BC邊上,∠ADC=45°,DC=6,tan∠BAD=___.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形
的頂點(diǎn)
為圓心,線段
長為半徑畫弧,交
邊于
點(diǎn);再以頂點(diǎn)
為圓心,線段
長為半徑畫弧,交
邊于
點(diǎn),若
,則
、
和
圍成的陰影面積是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人從少年宮出發(fā),沿相同的路線分別以不同的速度勻速跑向體育館,甲先跑一段路程后,乙開始出發(fā),當(dāng)乙超出甲150米時,乙停在此地等候甲,兩人相遇后乙又繼續(xù)以原來的速度跑向體育館.如圖是甲、乙兩人在跑步的全過程中經(jīng)過的路程y(米)與甲出發(fā)的時間x(秒)的函數(shù)圖象,則乙在途中等候甲用了( )秒
![]()
A.200B.150C.100D.80
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件
元,出廠價為每件
元,每月銷售量
(件)與銷售單價
(元)之間的關(guān)系近似滿足一次函數(shù):
.
(1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為
元,那么政府這個月為他承擔(dān)的總差價為多少元?
(2)設(shè)李明獲得的利潤為
(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于
元.如果李明想要每月獲得的利潤不低于
元,那么政府為他承擔(dān)的總差價最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個批發(fā)店銷售同一種蘋果,在甲批發(fā)店,不論一次購買數(shù)量是多少,價格均為6元/
.在乙批發(fā)店,一次購買數(shù)量不超過
時,價格為7元/
;一次購買數(shù)量超過
時,其中有
的價格仍為7元/
,超過
部分的價格為5元/
.設(shè)小王在同一個批發(fā)店一次購買蘋果的數(shù)量為
.
(Ⅰ)根據(jù)題意填空:
①若一次購買數(shù)量為
時,在甲批發(fā)店的花費(fèi)為________元,在乙批發(fā)店的花費(fèi)為________元;
②若一次購買數(shù)量為
時,在甲批發(fā)店的花費(fèi)為________元,在乙批發(fā)店的花費(fèi)為________元;
(Ⅱ)設(shè)在甲批發(fā)店花費(fèi)
元,在乙批發(fā)店花費(fèi)
元,分別求
,
關(guān)于
的函數(shù)解析式;
(Ⅲ)根據(jù)題意填空:
①若小王在甲批發(fā)店和在乙批發(fā)店一次購買蘋果的數(shù)量相同,且花費(fèi)相同,則他在同一個批發(fā)店一次購買蘋果的數(shù)量為_________
;
②若小王在同一個批發(fā)店一次購買蘋果的數(shù)量為
,則他在甲、乙兩個批發(fā)店中的________批發(fā)店購買花費(fèi)少;
③若小王在同一個批發(fā)店一次購買蘋果花費(fèi)了260元,則他在甲、乙兩個批發(fā)店中的_________批發(fā)店購買數(shù)量多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】桃花中學(xué)計(jì)劃購買
兩種型號的小黑板,經(jīng)洽談, 購買一塊
型小黑板比買一塊
型小黑板多
元,且購買
塊
型小黑板和
塊
型小黑板共需
元.
(1)求購買一塊
型小黑板和一塊
型小黑板各需要多少元?
(2)根據(jù)學(xué)校的實(shí)際情況,需購買
兩種型號的小黑板共
塊,并且購買
型小黑板的數(shù)量不少于購買
型小黑板的數(shù)量,請問學(xué)校購買這批小黑板最少要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,以
為直徑的
經(jīng)過點(diǎn)
過點(diǎn)
作
的切線
點(diǎn)
是
上不與點(diǎn)
重合的一個動點(diǎn),連接
.
![]()
求證:
;
填空:
當(dāng)
_ 時,
為等腰直角三角形:
當(dāng)
時,四邊形
為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n分別是關(guān)于x的一元二次方程ax2+bx+c=a與ax2+bx+c=b的一個根,且m=n+1.
(1)當(dāng)m=2,a=﹣1時,求b與c的值;
(2)用只含字母a,n的代數(shù)式表示b;
(3)當(dāng)a<0時,函數(shù)y=ax2+bx+c滿足b2﹣4ac=a,b+c≥2a,n≤﹣
,求a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com