欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=-1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

分析 (1)先把點(diǎn)A,C的坐標(biāo)分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對(duì)稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點(diǎn)的坐標(biāo)代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;
(2)設(shè)直線BC與對(duì)稱軸x=-1的交點(diǎn)為M,則此時(shí)MA+MC的值最。褁=-1代入直線y=x+3得y的值,即可求出點(diǎn)M坐標(biāo);
(3)設(shè)P(-1,t),又因?yàn)锽(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點(diǎn)P的坐標(biāo).

解答 解:(1)依題意得:$\left\{\begin{array}{l}{-\frac{2a}=-1}\\{a+b+c=0}\\{c=3}\end{array}\right.$,
解之得:$\left\{\begin{array}{l}{a=-1}\\{b=-2}\\{c=3}\end{array}\right.$,
∴拋物線解析式為y=-x2-2x+3
∵對(duì)稱軸為x=-1,且拋物線經(jīng)過(guò)A(1,0),
∴把B(-3,0)、C(0,3)分別代入直線y=mx+n,
得$\left\{\begin{array}{l}{-3m+n=0}\\{n=3}\end{array}\right.$,
解之得:$\left\{\begin{array}{l}{m=1}\\{n=3}\end{array}\right.$,
∴直線y=mx+n的解析式為y=x+3;

(2)設(shè)直線BC與對(duì)稱軸x=-1的交點(diǎn)為M,則此時(shí)MA+MC的值最。
把x=-1代入直線y=x+3得,y=2,
∴M(-1,2),
即當(dāng)點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小時(shí)M的坐標(biāo)為(-1,2);

(3)設(shè)P(-1,t),
又∵B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,
①若點(diǎn)B為直角頂點(diǎn),則BC2+PB2=PC2即:18+4+t2=t2-6t+10解之得:t=-2;
②若點(diǎn)C為直角頂點(diǎn),則BC2+PC2=PB2即:18+t2-6t+10=4+t2解之得:t=4,
③若點(diǎn)P為直角頂點(diǎn),則PB2+PC2=BC2即:4+t2+t2-6t+10=18解之得:t1=$\frac{3+\sqrt{17}}{2}$,t2=$\frac{3-\sqrt{17}}{2}$;
綜上所述P的坐標(biāo)為(-1,-2)或(-1,4)或(-1,$\frac{3+\sqrt{17}}{2}$) 或(-1,$\frac{3-\sqrt{17}}{2}$).

點(diǎn)評(píng) 本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對(duì)稱性質(zhì)確定線段的最小長(zhǎng)度、難度不是很大,是一道不錯(cuò)的中考?jí)狠S題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6. 如圖,已知FG⊥AB,CD⊥AB,垂足分別為G、D,∠1=∠2,
求證:∠CED+∠ACB=180°.請(qǐng)你將小明的證明過(guò)程補(bǔ)充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G、D(已知)
∴∠FGB=∠CDB=90°(垂直的定義),
∴GF∥CD (同位角相等,兩直線平行).
∵GF∥CD(已證)
∴∠2=∠BCD (兩直線平行,同位角相等)
又∵∠1=∠2(已知),
∴∠1=∠BCD (等量代換),
∴DE∥BC,(錯(cuò)角相等,兩直線平行)
∴∠CED+∠ACB=180°兩直線平行,同旁內(nèi)角互補(bǔ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.解分式方程
(1)$\frac{2-x}{x-3}$$+\frac{1}{3-x}$=1                        
(2)$\frac{2}{x-1}$=$\frac{4}{x2-1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在平面直角坐標(biāo)系內(nèi)有一個(gè)△ABC.
(1)在平面直角坐標(biāo)系內(nèi)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1;
(2)在平面直角坐標(biāo)系內(nèi)畫出△ABC繞原點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2;
(不要求尺規(guī)作圖,但要標(biāo)示出三角形各頂點(diǎn)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,B、C、E是同一直線上順次三點(diǎn),分別以BC、CE為斜邊在直線BE同側(cè)作Rt△ABC、Rt△DCE,且∠ACB=∠DEC.
(1)如圖1,若BC=2CE,CE=1,tan∠B=$\frac{3}{2}$,求AD的長(zhǎng);
(2)如圖2,連接BD,AE,分別交AC、CD于點(diǎn)M、N,連接MN.
①求證:∠CNM=∠ABC;
②若BE=10,直接寫出MN的最大值2.5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,邊長(zhǎng)為1的正方形ABCD一邊AD在x負(fù)半軸上,直線l:y=$\frac{1}{2}$x+2經(jīng)過(guò)點(diǎn)B(x,1)與x軸,y軸分別交于點(diǎn)H,F(xiàn),拋物線y=-x2+bx+c.
(1)求A,D兩點(diǎn)的坐標(biāo)及拋物線經(jīng)過(guò)A,D兩點(diǎn)時(shí)的解析式;
(2)當(dāng)拋物線的頂點(diǎn)E(m,n)在直線l上運(yùn)動(dòng)時(shí),連接EA,ED,試求△EAD的面積S與m之間的函數(shù)解析式,并寫出m的取值范圍;
(3)設(shè)拋物線與y軸交于G點(diǎn),當(dāng)頂點(diǎn)E在直線l上運(yùn)動(dòng)時(shí),以A,C,E,G為頂點(diǎn)的四邊形能否成為平行四邊形?若能,求出E點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系中,O為原點(diǎn),直線y=-2x-1與y軸交于點(diǎn)A,與直線y=-x交于點(diǎn)B,點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)C.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)P為拋物線上一點(diǎn),它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為Q.
①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
②若點(diǎn)P的橫坐標(biāo)為t(-1<t<1),當(dāng)t為何值時(shí),四邊形PBQC面積最大?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,下列幾何體的左視圖不是矩形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖所示幾何體的左視圖是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案