【題目】如圖,△ABC是等邊三角形,點(diǎn)D在BC上,△ADE是等腰三角形,AD =AE ,∠DAE =100°,當(dāng)DE⊥AC時(shí),求∠BAD和∠EDC的度數(shù).
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA、OB相交于點(diǎn)C、D,問PC與PD相等嗎?試說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)想三角形外心的概念,我們可引入如下概念:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.例:已知
,則點(diǎn)
為
的準(zhǔn)外心(如圖
).
如圖
,
為正三角形
的高,準(zhǔn)外心
在高
上,且
,求
的度數(shù).
如圖
,若
為直角三角形,
,
,
,準(zhǔn)外心
在
邊上,試探究
的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,
的
、
兩個(gè)頂點(diǎn)在
軸上,頂點(diǎn)
在
軸的負(fù)半軸上.已知
,
,
的面積
,拋物線
經(jīng)過
、
、
三點(diǎn).
![]()
求此拋物線的函數(shù)表達(dá)式;
點(diǎn)
是拋物線對稱軸上的一點(diǎn),在線段
上有一動(dòng)點(diǎn)
,以每秒
個(gè)單位的速度從
向
運(yùn)動(dòng),(不與點(diǎn)
,
重合),過點(diǎn)
作
,交
軸于點(diǎn)
,設(shè)點(diǎn)
的運(yùn)動(dòng)時(shí)間為
秒,試把
的面積
表示成
的函數(shù),當(dāng)
為何值時(shí),
有最大值,并求出最大值;
設(shè)點(diǎn)
是拋物線上異于點(diǎn)
,
的一個(gè)動(dòng)點(diǎn),過點(diǎn)
作
軸的平行線交拋物線于另一點(diǎn)
.以
為直徑畫
,則在點(diǎn)
的運(yùn)動(dòng)過程中,是否存在與
軸相切的
?若存在,求出此時(shí)點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請仔細(xì)觀察圖中等邊三角形圖形的變化規(guī)律,寫出你發(fā)現(xiàn)關(guān)于等邊三角形內(nèi)一點(diǎn)到三邊距離的數(shù)學(xué)事實(shí):_____________________
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形
中,
、
為對角線,點(diǎn)
、
、
、
分別為
、
、
、
邊的中點(diǎn),下列說法:
①當(dāng)
時(shí),
、
、
、
四點(diǎn)共圓.
②當(dāng)
時(shí),
、
、
、
四點(diǎn)共圓.
③當(dāng)
且
時(shí),
、
、
、
四點(diǎn)共圓.
其中正確的是( )
![]()
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市“青山綠水”行動(dòng)中,某社區(qū)計(jì)劃對面積為
的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個(gè)工程隊(duì)來完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為
區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.
(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;
(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬元,乙隊(duì)每天綠化費(fèi)用為0.5萬元,社區(qū)要使這次綠化的總費(fèi)用不超過40萬元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境和提高果樹產(chǎn)量,某果農(nóng)計(jì)劃從甲、乙兩個(gè)倉庫用汽車向A、B兩個(gè)果園運(yùn)送有機(jī)化肥,甲、乙兩個(gè)倉庫分別可運(yùn)出80噸和100噸有機(jī)化肥,A、B兩個(gè)果園分別需要110噸和70噸有機(jī)化肥.甲倉庫到A、B兩個(gè)果園的路程分別為15千米和25千米,乙倉庫到A、B兩個(gè)果園的路程都是20千米.設(shè)甲倉庫運(yùn)往A果園x噸有機(jī)化肥,解答下列問題:
(1)甲倉庫運(yùn)往B果園 噸有機(jī)化肥,乙倉庫運(yùn)往B果園 噸有機(jī)化肥;
(2)若汽車每噸每千米的運(yùn)費(fèi)為2元,設(shè)總運(yùn)費(fèi)為y元,求y關(guān)于x的函數(shù)表達(dá)式,并求當(dāng)甲倉庫運(yùn)往A果園多少噸有機(jī)化肥時(shí),總運(yùn)費(fèi)最?此時(shí)的總運(yùn)費(fèi)是多少元?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com