分析 根據(jù)正方形的性質(zhì)得出∠B=∠D=90°,AD=AB,根據(jù)折疊的性質(zhì)得出AD=AF,∠AFG=∠D=90°,求出∠AFG=90°=∠B,AB=AF,根據(jù)HL推出全等即可.
解答 證明:∵四邊形ABCD是正方形,
∴∠B=∠D=90°,AD=AB,
由折疊的性質(zhì)可知:AD=AF,∠AFG=∠D=90°,
∴∠AFG=90°=∠B,AB=AF,
在Rt△ABG和Rt△AFG中
$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$
∴Rt△ABG≌Rt△AFG(HL),
即△ABG≌△AFG.
點評 本題考查了正方形的性質(zhì),全等三角形的判定的應(yīng)用,能求出證三角形全等的條件是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,直角三角形全等還有HL定理.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3$\sqrt{\frac{2}{3}}$=$\sqrt{2}$ | B. | -3$\sqrt{2}$=$\sqrt{(-3)^{2}×2}$ | C. | $\sqrt{(-2)^{6}}$=(-2)3 | D. | $\sqrt{(a-b)^{4}}$=(a-b)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6a-5a=1 | B. | a2+a2=2a4 | C. | 3a2b-4b2a=-a2b | D. | 2a3+3a3=5a3 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com