設(shè)P=
,Q=
,R=
.則P、Q、R的大小關(guān)系為
[ ]
科目:初中數(shù)學(xué) 來源: 題型:044
傳說波斯國王,出了下列算題懸賞大臣:
我的3只金碗里放著數(shù)目相同的珍珠,我把第一只金碗里的珍珠的一半給我大兒子,把第二只金碗里的珍珠的
給我二兒子,把第三只金碗里的
珍珠的給我的小兒子,然后再把第一只金碗里的4顆珍珠給我大女兒,把第二只金碗里的6顆珍珠給我二女兒,把第三只金碗里的2顆珍珠給我小女兒,這樣第一只金碗里剩下38顆珍珠,第二只金碗里剩下22顆珍珠,第三只金碗里剩下19顆珍珠,試問:我的3只金碗里原來分別放著多少顆珍珠?
第一個大臣認(rèn)為第一只金碗里的一半為(38+4)顆,所以第一只金碗里有2(38+4)=84(顆).第二只金碗里的
為(22+6)顆,所以第二只金碗里有3(22+6)=84(顆).第三只金碗里的
為(19+2)顆,所以第三只金碗里有4(19+2)=84(顆).所以國王三只金碗里分別放著84顆珍珠.
第二個大臣設(shè)第一只金碗里有x顆珍珠,由題意列出方程
x+4+38=x解得x=84,設(shè)第二只金碗里有y顆珍珠,由題意列出方程專
y+6+22=y(tǒng),解得y=84,設(shè)第三只金碗里有z顆珍珠,由題意列出方程
z+2+19=z,解得z=84.所以國王三只金碗里分別放著84顆珍珠
第三個大臣設(shè)國王的每只金碗里放著x顆珍珠,a代表國王給兒子的珍珠占碗里的珍珠數(shù)的幾分之幾,b代表國王給女兒的珍珠數(shù),c代表碗里剩下的珍珠數(shù).由題意列出方程ax+b+c=x,(1-a)x=b+c,x=
.
請你將(1)b=4,c=38,a=
;(2)b=6,c=22,a=
;(3)b=2,c=19,a=
分別代入x=
,計算一下x的值是否與第一個、第二個大臣算出的珍珠數(shù)相符?并請你為波斯國王當(dāng)一回“參謀”,三個大臣該如何得到國王的懸賞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省吉安市朝宗實驗學(xué)校七年級下學(xué)期第一次段考數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖所示,平面內(nèi),AB∥CD,點E、F分別在直線AB、CD上,點P是這兩條直線外的一個動點,連接EP、FP,設(shè)∠AEP=∠
,∠CFP=∠
,∠EPF=∠
。![]()
(1)如果點P在直線AB、CD之間,那么∠
、∠
、∠
之間有怎樣的數(shù)量關(guān)系(以圖①為例)?并說明理由。
(2)在(1)中的條件下,請畫出符合條件的其他圖形(每一種位置只畫一個示意圖),并直接寫出∠
、∠
、∠
之間的數(shù)量關(guān)系。(提示:對點P與直線EF的位置關(guān)系進(jìn)行討論)
(3)如果點P在直線AB上方,請畫出所有符合題意的圖形(每一種位置只畫一個示意圖),并探索∠
、∠
、∠
之間的數(shù)量關(guān)系,選一種圖形說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆江西省七年級下學(xué)期第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,平面內(nèi),AB∥CD,點E、F分別在直線AB、CD上,點P是這兩條直線外的一個動點,連接EP、FP,設(shè)∠AEP=∠
,∠CFP=∠
,∠EPF=∠
。
![]()
(1)如果點P在直線AB、CD之間,那么∠
、∠
、∠
之間有怎樣的數(shù)量關(guān)系(以圖①為例)?并說明理由。
(2)在(1)中的條件下,請畫出符合條件的其他圖形(每一種位置只畫一個示意圖),并直接寫出∠
、∠
、∠
之間的數(shù)量關(guān)系。(提示:對點P與直線EF的位置關(guān)系進(jìn)行討論)
(3)如果點P在直線AB上方,請畫出所有符合題意的圖形(每一種位置只畫一個示意圖),并探索∠
、∠
、∠
之間的數(shù)量關(guān)系,選一種圖形說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平行四邊形ABCD中,AB=5,BC=10,F為AD的中點,CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時,求CE的長;
(2)當(dāng)60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時,求tan∠DCF的值.
分析 (1)利用60°角
的正弦值列式計算即可得解;
(2)①連接CF并延長交BA的延長線于點G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=GF,AG=CD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EF=GF,再根據(jù)A
B、BC的長度可得AG=AF,然后利用等邊對等角的性質(zhì)可得∠AEF=∠G=∠AFG,
根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;
②設(shè)BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問題解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AD是∠A的外角平分線,P是AD上異于A的任意一點,設(shè)PB=
,PC=
,AB=
,AC=
,則
與
的大小關(guān)系是( )
A、
>
B、
<
C、
=
D、無法確定
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com