【題目】如圖,平面直角坐標(biāo)系中,A(0,3)、B(3,0)、C(﹣3,0).
![]()
(1)過B作直線MN⊥AB,P為線段OC上的一動(dòng)點(diǎn),AP⊥PH交直線M于點(diǎn)H,證明:PA=PH.
(2)在(1)的條件下,若在點(diǎn)A處有一個(gè)等腰Rt△APQ繞點(diǎn)A旋轉(zhuǎn),且AP=PQ,∠APQ=90°,連接BQ,點(diǎn)G為BQ的中點(diǎn),試猜想線段OG與線段PG的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.
【答案】(1)見解析;(2)OG=PG,OG⊥PG,見解析.
【解析】
(1)利用A(0,2)、B(2,0)、C(﹣2,0),得到△ABC,△OAC,△OAB都是等腰直角三角形,如圖1,過點(diǎn)P作PG∥AB交y軸與G,則∠4=∠6=45°,再證明△APG≌△PHB,得到PA=PH.
(2)OG=PG,OG⊥PG,理由:如圖2,延長PG到R,使GR=PG,連接PO,OR,BR,證明△PQG≌△BRG,得到PQ=BR,∠5=∠GBR,進(jìn)而AP⊥PQ,再延長AP交BR于S,交OB于T,則AP⊥BR,證明△PAO≌△RBO,得到PO=OR,∠1=∠2,所以△POR為等腰直角三角形,根據(jù)PG=GR,所以OG⊥PG,OG=PG.
(1)∵A(0,3)、B(3,0)、C(﹣3,0).
∴OA=OB=OC,
∴△ABC,△OAC,△OAB都是等腰直角三角形,
∴∠6=∠7=45°,
如圖1,過點(diǎn)P作PG∥AB交y軸與G,則∠4=∠6=45°,
![]()
∴OP=OG,
∴AO+OG=OB+OP,
即AG=PB,
∵AP⊥PH,
∴∠2+∠5=90°,
∵∠1+∠5=90°,
∴∠1=∠2,
∵MN⊥AB,
∴∠3+∠7=90°,
∴∠3=45°,
∴∠3=∠4,
在△APG和△PHB中,
,
∴△APG≌△PHB(ASA),
∴PA=PH.
(2)結(jié)論:OG=PG,OG⊥PG,![]()
理由:如圖2,延長PG到R,使GR=PG,連接PO,OR,BR,
在△PQG和△BRG中,
,
∴△PQG≌△BRG(SAS),
∴PQ=BR,∠5=∠GBR,
∴PQ∥BR,
∵AP⊥PQ,
延長AP交BR于S,交OB于T,則AP⊥BR,
∵∠AOB=∠ASB=90°,∠ATR=∠BTS,
∴∠α=∠β,
∵PA=PQ,PQ=BR,
∴PA=BR,
在△PAO和△RBO中,
,
∴△PAO≌△RBO(SAS),
∴PO=OR,∠1=∠2,
∵∠1+∠POB=90°,
∴∠POB+∠2=90°,
∴△POR為等腰直角三角形,
∵PG=GR,
∴OG⊥PG,OG=PG.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1和l2分別是走私船和我公安快艇航行路程與時(shí)間的函數(shù)圖象,請結(jié)合圖象解決下列問題:
(1)在剛出發(fā)時(shí),我公安快艇距走私船多少海里?
(2)計(jì)算走私船與公安艇的速度分別是多少?
(3)求出l1,l2的解析式.
(4)問6分鐘時(shí),走私船與我公安快艇相距多少海里?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,圖2,圖3,在
中,分別以
,
為邊,向
外作正三角形,正四邊形,正五邊形,
,
相交于點(diǎn)O.
①如圖1,求證:
≌
;
②探究:如圖1,
________;如圖2,
_______;如圖3,
_______;
(2)如圖4,已知:
,
是以
為邊向
外所作正n邊形的一組鄰邊:
,
是以
為邊向
外所作正n邊形的一組鄰邊,
,
的延長相交于點(diǎn)O.
①猜想:如圖4,
(用含n的式子表示);
②根據(jù)圖4證明你的猜想.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知
為
直徑,
是直徑
上一動(dòng)點(diǎn)(不與點(diǎn)
,
,
重合),過點(diǎn)
作直線
交
于
,
兩點(diǎn),
是
上一點(diǎn)(不與點(diǎn)
,
重合),且
,直線
交直線
于點(diǎn)
.
如圖
,當(dāng)點(diǎn)
在線段
上時(shí),試判斷
與
的大小關(guān)系,并證明你的結(jié)論;
當(dāng)點(diǎn)
在線段
上,且
時(shí),其它條件不變.
![]()
①請你在圖
中畫出符合要求的圖形,并參照圖
標(biāo)記字母;
②判斷
中的結(jié)論是否還成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
的圖象與x軸交于(
, 0)和(
, 0), 其中
,與
軸交于正半軸上一點(diǎn).下列結(jié)論:①
;②
;③a>b;④
.其中正確結(jié)論的序號是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形
中,
于點(diǎn)
,
于點(diǎn)
,且
、
分別為
、
的中點(diǎn),(如圖)則
等于( )
![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=40°,點(diǎn)P在∠AOB的內(nèi)部,點(diǎn)C,D分別是點(diǎn)P關(guān)于直線OA,OB的對稱點(diǎn),連接CD分別交OA,OB于點(diǎn)E、F.則∠EPF=___________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在BC邊上,DE垂直平分AC邊,垂足為點(diǎn)E,若∠B=70°,且AB+BD=BC,則∠BAC的度數(shù)是( )
![]()
A.65°B.70°C.75°D.80°
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com