【題目】如圖1,在平面直角坐標(biāo)系xOy中,雙曲線
與直線y=ax+b(a≠0)交于A、B兩點(diǎn),直線AB分別交x軸、y軸于C、D兩點(diǎn),E為x軸上一點(diǎn).已知OA=OC=OE,A點(diǎn)坐標(biāo)為(3,4).
(1)將線段OE沿x軸平移得線段O′E′(如圖1),在移動(dòng)過(guò)程中,是否存在某個(gè)位置使|BO′﹣AE′|的值最大?若存在,求出|BO′﹣AE′|的最大值及此時(shí)點(diǎn)O′的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(2)將直線OA沿射線OE平移,平移過(guò)程中交
的圖象于點(diǎn)M(M不與A重合),交x軸于點(diǎn)N(如圖3).在平移過(guò)程中,是否存在某個(gè)位置使△MNE為以MN為腰的等腰三角形?若存在,求出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
![]()
【答案】(1)存在,|BO′﹣AE′|的最大值為
,此時(shí)點(diǎn)O′的坐標(biāo)(﹣
,0);(2)存在,M(
)或(8,
).
【解析】
(1)把A向左平移5個(gè)單位得A1(-2,4),作B關(guān)于x軸的對(duì)稱點(diǎn)B1,則有|BO′-AE′|=|BO′-A1O′|=B1O′-A1O′|≤A1B1,想辦法求出A1B1,直線A1B1的解析式即可解決問(wèn)題;
(2)設(shè)M(m,
),則N(m
,0),NE2=(5-m+
)2,ME2=(5-m)2+(
)2,MN2=(
)2+(
)2,分MN=EM,MN=NE兩種情形,分別構(gòu)建方程即可解決問(wèn)題.
(1)如圖1中,
![]()
∵A(3,4),
∴OA=
=5,
∵OA=OC=OE,
∴OA=OC=OE=5,
∴C(﹣5,0),E(5,0),
把A、C兩點(diǎn)坐標(biāo)代入y=ax+b得到
,
解得
,
∴直線的解析式為:
,
把A(3,4)代入y=
中,得到k=12,
∴反比例函數(shù)的解析式為y=
,
把A向左平移5個(gè)單位得A1(﹣2,4),作B關(guān)于x軸的對(duì)稱點(diǎn)B1,
則有|BO′﹣AE′|=|BO′﹣A1O′|=|B1O′﹣A1O′|≤A1B1,
直線AC:
,
雙曲線:
,
∴B(﹣8,﹣
),B1(﹣8,
),
∴A1B1=
,
直線A1B1:
,
令y=0,可得x=﹣
,
∴O′(﹣
,0).
∴|BO′﹣AE′|的最大值為
,此時(shí)點(diǎn)O′的坐標(biāo)(﹣
,0).
(2)設(shè)M(m,
),則N(m﹣
,0),
∴NE2=(5﹣m+
)2,ME2=(5﹣m)2+(
)2,MN2=(
)2+(
)2
若MN=ME,則有,(5﹣m)2+(
)2=(
)2+(
)2,
解得:m=
或
(舍棄),
∴M(
,
),
若MN=NE,則有(5﹣m+
)2=(
)2+(
)2,解得m=8或3(舍棄),
∴M(8,
),
綜上所述,滿足條件的點(diǎn)M的坐標(biāo)為(
,
)或(8,
).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了積極助力脫貧攻堅(jiān)工作,如期打贏脫貧攻堅(jiān)戰(zhàn),某駐村干部帶領(lǐng)村民種植草莓,在每年成熟期都會(huì)吸引很多人到果園去采摘.現(xiàn)有甲、乙兩家果園可供采摘,這兩家草莓的品質(zhì)相同,售價(jià)均為每千克30元,但是兩家果園的采摘方案不同:
甲果園:每人需購(gòu)買(mǎi)20元的門(mén)票一張,采摘的草莓按6折優(yōu)惠;
乙果園:不需要購(gòu)買(mǎi)門(mén)票,采摘的草莓按售價(jià)付款不優(yōu)惠.
設(shè)小明和爸爸媽媽三個(gè)人采摘的草莓?dāng)?shù)量為
千克,在甲、乙果園采摘所需總費(fèi)用分別為
、
元,其函數(shù)圖象如圖所示.
![]()
(1)分別寫(xiě)出
、
與
之間的函數(shù)關(guān)系式;
(2)請(qǐng)求出圖中點(diǎn)
的坐標(biāo);
(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫(xiě)出小明一家選擇哪家果園采摘更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1的矩形ABCD中,E點(diǎn)在AD上,且AB=
,AE=1.今分別以BE、CE為折線,將A、D向BC的方向折過(guò)去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠AEC的度數(shù)是( 。
![]()
A.10°B.15°C.20°D.22.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年9月10日是我國(guó)第35個(gè)教師節(jié),某中學(xué)德育處發(fā)起了感恩小學(xué)恩師的活動(dòng),德育處要求每位同學(xué)從以下三種方式中選擇一種方式表達(dá)感恩:A.信件感恩,B.信息感恩,C.當(dāng)面感恩.為了解同學(xué)們選擇以上三種感恩方式的情況,德育處隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了調(diào)查,井根據(jù)調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.
![]()
根據(jù)圖中信息,解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_(kāi)_______,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)本次調(diào)查在選擇A方式的學(xué)生中有兩名男生和兩名女生來(lái)自于同一所小學(xué),德育處打算從他們四個(gè)人中選擇兩位在主題升旗儀式上發(fā)言,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形OABC中,OA=8,AB=6,點(diǎn)D在邊BC上,且CD=3DB,點(diǎn)E是邊OA上一點(diǎn),連接DE,將四邊形ABDE沿DE折疊,若點(diǎn)A的對(duì)稱點(diǎn)A′恰好落在邊OC上,則OE的長(zhǎng)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=4,BA=5,點(diǎn)D在邊AC上的一動(dòng)點(diǎn),過(guò)點(diǎn)D作DE∥AB交邊BC于點(diǎn)E,過(guò)點(diǎn)B作BF⊥BC交DE的延長(zhǎng)線于點(diǎn)F,分別以DE,EF為對(duì)角線畫(huà)矩形CDGE和矩形HEBF,則在D從A到C的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形CDGE和矩形HEBF的面積和最小時(shí),則EF的長(zhǎng)度為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于6cm2?
(2)在(1)中,△PQB的面積能否等于8cm2?說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是等邊三角形,
,
在
上且
,
是直線
上一動(dòng)點(diǎn),線段
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)
,得到線段
,當(dāng)點(diǎn)
運(yùn)動(dòng)時(shí), 則線段
的最小值是________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com