分析 (1)求出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)求出AE=AB=a,根據(jù)勾股定理求出BE即可.
解答 解:(1)△BEC是等腰三角形,理由如下:
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,
即△BEC是等腰三角形.
(2)∵四邊形ABCD是矩形,
∴∠A=90°,
∵∠ABE=45°,
∴∠ABE=AEB=45°,
∴AB=AE=a,
由勾股定理得:BE=$\sqrt{{a}^{2}+{a}^{2}}$=$\sqrt{2}$a,
即BC=BE=$\sqrt{2}$a.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理的應(yīng)用等知識(shí);熟練掌握矩形的性質(zhì)、等腰三角形的判定與性質(zhì)是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}x=2\\ y=-4\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=2\\ y=4\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=-2\\ y=4\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=-2\\ y=-4\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 購(gòu)物總金額(原價(jià)) | 折扣率 |
| 不超過(guò)3000元的部分 | 九折 |
| 超過(guò)3000元但不超過(guò)5000元的部分 | 八折 |
| 超過(guò)5000元的部分 | 七折 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com