| A. | 96 | B. | 120 | C. | 84 | D. | 60 |
分析 過點A作AD⊥BC,利用勾股定理求出AD的長,再利用三角形的面積公式求出△ABC的面積即可.
解答
解:設(shè)BD=x,則CD=14-x,在Rt△ABD中,AD2+x2=132,
在Rt△ADC中,AD2=152-(14-x)2,
∴132-x2=152-(14-x)2,
132-x2=152-196+28x-x2,
解得x=9,
∴CD=5,
在Rt△ACD中,AD=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
∴△ABC的面積=$\frac{1}{2}$×BC•AD=$\frac{1}{2}$×14×12=84,
故選C.
點評 本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com