| A. | 相離 | B. | 相切 | C. | 相交 | D. | 不能確定 |
分析 作AD⊥BC于D,由等腰三角形的性質(zhì)得出BD=CD=$\frac{1}{2}$BC=2,由勾股定理求出AD=4$\sqrt{2}$>5,即d>r,即可得出結(jié)論.
解答 解:如圖所示:![]()
在等腰三角形ABC中,作AD⊥BC于D,
則BD=CD=$\frac{1}{2}$BC=2,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{{6}^{2}-{2}^{2}}$=4$\sqrt{2}$>5,
即d>r,
∴該圓與底邊的位置關(guān)系是相離;
故選:A.
點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)、直線與圓的位置關(guān)系、勾股定理;熟練掌握等腰三角形的性質(zhì),由勾股定理求出AD是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3x+1}{x-1}$ | B. | $\frac{x+1}{x-1}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x+2y=1 | B. | 2y+$\frac{y}{2}$+1=0 | C. | $\frac{2}{x}$+3=0 | D. | 2y2=8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 三邊a、b、c | m | l×m | S |
| 3、4、5 | 2 | 24 | 6 |
| 5、12、13 | 4 | 120 | 30 |
| 8、15、17 | 6 | 240 | 60 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com