【題目】如圖,已知點(diǎn)
、
、
、
在同一條直線上,
,
,
,連結(jié)
、
.
![]()
(1)請直接寫出圖中所有的全等三角形(不添加其它的線);
(2)從(1)中的全等三角形中任選一組進(jìn)行證明.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
,
的平分線
與邊
的垂直平分線
相交于點(diǎn)
,
交
的延長線于點(diǎn)
,
于點(diǎn)
,現(xiàn)有下列結(jié)論:①
;②
;③
平分
;④
,其中正確的是( )
![]()
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是
的角平分線,
;垂足為
交
的延長線于點(diǎn)
,若
恰好平分
.給出下列三個結(jié)論:①
;②
;③
.其中正確的結(jié)論共有( )個
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(﹣2,4),B(﹣4,1),C(0,1).
(1)畫出與△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)畫出以C1為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)尺規(guī)作圖:連接A1A2,在C1A2邊上求作一點(diǎn)P,使得點(diǎn)P到A1A2的距離等于PC1的長(保留作圖痕跡,不寫作法);
(4)請直接寫出∠C1A1P的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
中,
厘米,
厘米,點(diǎn)
為
的中點(diǎn).
![]()
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.
①若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1秒后,
與
是否全等,請說明理由;
②若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,
與
是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動速度和時(shí)間;若不能,請說明理由.
(2)若點(diǎn)Q以②中的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿
三邊運(yùn)動,求經(jīng)過多長時(shí)間點(diǎn)P與點(diǎn)Q第一次在
的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=
的圖象與一次函數(shù)y=-x-(k+1)的圖象在第二象限的交點(diǎn),AB⊥x軸于點(diǎn)B,且S△ABO=
.
![]()
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求一次函數(shù)與反比例函數(shù)圖象的兩個交點(diǎn)A,C的坐標(biāo)以及△AOC的面積;
(3)當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有三條線段
、
、
,
,
,
,且
.點(diǎn)
和點(diǎn)
分別為
上的兩個動點(diǎn),且
.
求證:
;
當(dāng)
時(shí),求
的長度;
在以上
個問題的解題過程中,概括(或者描述)你所用到數(shù)學(xué)基本知識(定義、定理等)或者是利用的數(shù)學(xué)思想方法.(共寫出
點(diǎn)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知
與
成正比例,
,
為常數(shù)
(1)試說明:
是
的一次函數(shù);
(2)若
時(shí),
;
時(shí),
,求函數(shù)關(guān)系式;
(3)將(2)中所得的函數(shù)圖象平移,使它過點(diǎn)
,求平移后的直線的解析式.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com