| A. | 1-$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 1-$\frac{2\sqrt{3}}{3}$ |
分析 連接AE.根據(jù)HL易證△AB′E≌△ADE,得出∠B′AE=∠DAE=30°.在直角△ADE中,由正切的定義得出DE=AD•tan∠DAE=$\frac{\sqrt{3}}{3}$.再利用三角形的面積公式求出S四邊形AB′ED=2S△ADE.
解答 解:設(shè)B′C′與CD交于點(diǎn)E,連接AE.
在△AB′E與△ADE中,∠AB′E=∠ADE=90°,![]()
∵$\left\{\begin{array}{l}{AE=AE}\\{AB′=AD}\end{array}\right.$,
∴△AB′E≌△ADE(HL),
∴∠B′AE=∠DAE.
∵∠BAB′=30°,∠BAD=90°,
∴∠B′AE=∠DAE=30°,
∴DE=AD•tan∠DAE=$\frac{\sqrt{3}}{3}$.
∴S四邊形AB′ED=2S△ADE=2×$\frac{1}{2}$×1×$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$,
故選B.
點(diǎn)評(píng) 本題主要考查了正方形、旋轉(zhuǎn)的性質(zhì),直角三角形的判定及性質(zhì),圖形的面積以及三角函數(shù)等知識(shí),綜合性較強(qiáng),有一定難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y1<y2<y3 | B. | y1<y3<y2 | C. | y3<y2<y1 | D. | y3<y1<y2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com