分析 利用角邊角證明△AME與△FMD全等,得到M為EF的中點(diǎn),根據(jù)平行四邊形的對(duì)邊平行,得到∠BEC=∠ECF=90°,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得出ME=MC,根據(jù)等比對(duì)等角,得到∠MEC=∠MCE=40°,從而得出∠EMC和∠MCD的度數(shù),再根據(jù)AD=2AB,AD=2MD,所以MD=AB,根據(jù)平行四邊形的性質(zhì)得AB=CD,即MD=CD,根據(jù)等邊對(duì)等角求出∠DMC的度數(shù),而要求的角等于上邊求出的∠EMC和∠DMC的和,從而求出答案.
解答 解:延長(zhǎng)EM與CD的延長(zhǎng)線交于點(diǎn)F,連接CM,
∵M(jìn)是AD的中點(diǎn),∴AM=DM,![]()
∵四邊形ABCD為平行四邊形,
∴AB∥CD,又∠BEC=90°,
∴∠ECF=90°,∠A=MDF,
在△AEM和△DFM中
$\left\{\begin{array}{l}{∠AEM=∠F}\\{∠AME=∠DMF}\\{AM=DM}\end{array}\right.$
∴△AEM≌△DFM(AAS),
∴EM=FM,
∴CM=EM=$\frac{1}{2}$EF,
∴∠MEC=∠MCE=40°,
∴∠EMC=100°,∠MCD=50°,
又∵M(jìn)為AD中點(diǎn),AD=2DC,
∴MD=CD=$\frac{1}{2}$AD,
∴∠DMC=∠DCM=50°,
∴∠DME=∠EMC+∠DMC=100°+50°=150°,
則∠AME=30°.
故答案為:30°.
點(diǎn)評(píng) 此題考查了平行四邊形的性質(zhì)以及直角三角形的性質(zhì),同時(shí)還要注意等腰三角形的性質(zhì)在做題中的靈活運(yùn)用,得出∠MEC=∠MCE是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 眾數(shù) | B. | 方差 | C. | 中位數(shù) | D. | 平均數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 400 | B. | 420 | C. | 440 | D. | 460 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com