欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.如圖1,在平面直角坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=
|x2-x1|2+|y2-y1|2,所以A,B兩點(diǎn)間的距離為:AB=$\sqrt{({x}_{2}-{x}_{1})^{2}+({y}_{2}-{y}_{1})^{2}}$
我們知道,圓可以看成到圓心距離等于半徑的點(diǎn)的集合,如圖2,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點(diǎn),則A到原點(diǎn)的距離的平方為OA2=|x-0|2+|y-0|2,當(dāng)⊙O的半徑為r時(shí),⊙O的方程可寫為:x2+y2=r2
問(wèn)題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為(x-a)2+(y-b)2=r2
綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使∠POA=30°,作PD⊥OA,垂足為D,延長(zhǎng)PD交x軸于點(diǎn)B,連接AB.
①證明:AB是⊙P的切線;
②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫出以Q為圓心,以O(shè)Q為半徑的⊙Q的方程;若不存在,說(shuō)明理由.

分析 問(wèn)題拓展:直接根據(jù)圓的定義即可得出結(jié)論;
綜合應(yīng)用:①先判斷出△POB≌△PAB,即可得出結(jié)論;
②先得出點(diǎn)Q是BP中點(diǎn),再根據(jù)含30°角的直角三角形的性質(zhì)確定出點(diǎn)B的坐標(biāo),進(jìn)而得出點(diǎn)Q的坐標(biāo),

解答 解:?jiǎn)栴}拓展:根據(jù)圓的定義得,(x-a)2+(y-b)2=r2,
故答案為:(x-a)2+(y-b)2=r2,

綜合應(yīng)用:①∵PO=PA    PD⊥OA,
∴∠OPD=∠APD,
在△POB和△PAB中 $\left\{\begin{array}{l}{PO=PA}\\{∠OPB=∠APB}\\{PB=PB}\end{array}\right.$,
∴△POB≌△PAB,
∴∠PAB=∠POB=90°,
∴PA⊥AB
∴AB是⊙P的切線,

②存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q,
當(dāng)點(diǎn)Q在線段BP中點(diǎn)時(shí)
∵∠POB=∠PAB=90°,
∴QO=QP=QA=QB
∴此時(shí)點(diǎn)Q到四點(diǎn)O,P,A,B距離都相等
∵PB⊥OA,∠POB=90°,∠POA=30°
∴∠PBO=30°.
∴在Rt△POB中,OP=6,
∴OB=$\sqrt{3}$OP=6$\sqrt{3}$,PB=2PO=12
∴B點(diǎn)坐標(biāo)為(6$\sqrt{3}$,0),
∵Q是PB中點(diǎn),P(0,6),B(6$\sqrt{3}$,0),
∴Q點(diǎn)坐標(biāo)為(3$\sqrt{3}$,3)
∴OQ=$\frac{1}{2}$PB=6
∴以Q為圓心,OQ為半徑的⊙Q的方程為(x-3$\sqrt{3}$)2+(y-3)2=36.

點(diǎn)評(píng) 此題是圓的綜合題,主要考查了新定義,全等三角形的判定和性質(zhì),切線的判定,含30°的直角三角形的性質(zhì),解(1)的關(guān)鍵是判斷出△POB≌△PAB,解(2)的關(guān)鍵是求出點(diǎn)B的坐標(biāo),是一道中等難度的題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2016~2017學(xué)年安徽省蕪湖市九年級(jí)下學(xué)期第一次模擬考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知x=1是方程x+b x-2=0的一個(gè)根,則方程的另一個(gè)根是

A.1 B.2 C.-2 D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.閱讀理解
如圖(1),在正多邊形A1A2A3…An的邊A2A3上任取一不與點(diǎn)A2重合的點(diǎn)B2,并以線段A1B2為邊在線段A1A2的上方作以正多邊形A1B2B3…Bn,把正多邊形A1B2B3…Bn叫正多邊形A1A2…An的準(zhǔn)位似圖形,點(diǎn)A3稱為準(zhǔn)位似中心.
特例論證
(1)如圖(2)已知正三角形A1A2A3的準(zhǔn)位似圖形為正三角形A1B2B3,試證明:隨著點(diǎn)B2的運(yùn)動(dòng),∠B3A3A1的大小始終不變.
數(shù)學(xué)思考
(2)如圖(3)已知正方形A1A2A3A4的準(zhǔn)位似圖形為正方形A1B2B3B4,隨著點(diǎn)B2的運(yùn)動(dòng),∠B3A3A4的大小始終不變?若不變,請(qǐng)求出∠B3A3A4的大;若改變,請(qǐng)說(shuō)明理由.
歸納猜想
(3)在圖(1)的情況下:
①試猜想∠B3A3A4的大小是否會(huì)發(fā)生改變?若不改變,請(qǐng)用含n的代數(shù)式表示出∠B3A3A4的大。ㄖ苯訉懗鼋Y(jié)果);若改變,請(qǐng)說(shuō)明理由.
①∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠BnAnA1=$\frac{90°(n-1)(n-2)}{n}$(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.【問(wèn)題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.求證:AM=AD+MC.

【探究展示】
(2)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,試判斷AM=AD+MC是否成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;
【拓展延伸】
(3)若(2)中矩形ABCD兩邊AB=6,BC=9,求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,P1、P2(P2在P1的右側(cè))是y=$\frac{k}{x}$(k>0)在第一象限上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(2,0).
(1)填空:當(dāng)點(diǎn)P1的橫坐標(biāo)逐漸增大時(shí),△P1OA1的面積將減。p小、不變、增大)
(2)若△P1OA1與△P2A1A2均為等邊三角形,
①求反比例函數(shù)的解析式;
②求出點(diǎn)P2的坐標(biāo),并根據(jù)圖象直接寫在第一象限內(nèi),當(dāng)x滿足什么條件時(shí),經(jīng)過(guò)點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y=$\frac{k}{x}$的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校體育社團(tuán)在校內(nèi)開展“最喜歡的體育項(xiàng)目(四項(xiàng)選一項(xiàng))”調(diào)查,對(duì)九年級(jí)學(xué)生隨機(jī)抽樣,并將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)求本次抽樣人數(shù)有多少人?
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)該校九年級(jí)共有600名學(xué)生,估計(jì)九年級(jí)最喜歡跳繩項(xiàng)目的學(xué)生有多少人?
(4)若從3名最喜愛(ài)“籃球”項(xiàng)目的學(xué)生和1名最喜愛(ài)“跳繩”項(xiàng)目的學(xué)生中隨機(jī)抽取兩人參加訓(xùn)練,用列表或畫樹狀圖的方法求所抽取的兩人都最喜愛(ài)“籃球”項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列幾何體中,主視圖是三角形的為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式x+1<8的最大整數(shù)解為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在矩形ABCD中,E是AD上一點(diǎn),AB=8,BE=BC=10,動(dòng)點(diǎn)P在線段BE上(與點(diǎn)B、E不重合),點(diǎn)Q在BC的延長(zhǎng)線上,PE=CQ,PQ交EC于點(diǎn)F,PG∥BQ交EC于點(diǎn)G,設(shè)PE=x.
(1)求證:△PFG≌△QFC
(2)連結(jié)DG.當(dāng)x為何值時(shí),四邊形PGDE是菱形,請(qǐng)說(shuō)明理由;
(3)作PH⊥EC于點(diǎn)H.探究:
①點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段HF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求HF的長(zhǎng)度;
②當(dāng)x為何值時(shí),△PHF與△BAE相似.

查看答案和解析>>

同步練習(xí)冊(cè)答案