【題目】如圖,△ABC為圓O的內(nèi)接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB,并求AB的長;
(2)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?
![]()
【答案】(1)見解析,AB=2
;(2)直線FA與⊙O相切,見解析.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)和圓周角定理可得∠ABC=∠D,由∠BAE=∠DAB故△ABE∽△ADB,進(jìn)而可得
;代入數(shù)據(jù)即可得求解.
(2)連接OA,根據(jù)勾股定理可得BF=BO=AB;易得∠OAF=90°,可得直線FA與⊙O相切.
(1)證明:∵AB=AC,
∴∠ABC=∠C.
∵∠C=∠D,
∴∠ABC=∠D.
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,
∴
,
∴AB2=ADAE=(AE+ED)AE=(2+4)×2=12,
∴AB=2
;
(2)解:直線FA與⊙O相切.
理由如下:
連接OA,
∵BD為⊙O的直徑,
∴∠BAD=90°,
∴BD=
,
∴BF=BO=
.
∵AB=2
,
∴BF=BO=AB,
∴∠OAF=90°.
∴直線FA與⊙O相切.
![]()
故答案為:(1)見解析,AB=2
;(2)直線FA與⊙O相切,見解析.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是CD的中點(diǎn),將△BCE沿BE折疊后得到△BEF、且點(diǎn)F在矩形ABCD的內(nèi)部,將BF延長交AD于點(diǎn)G.若
,則
=__.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)分別是A(3,4)、B(1,2)、C(5,3)
(1)將△ABC平移,使得點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)為(﹣2,4),在如圖的坐標(biāo)系中畫出平移后的△A1B1C1;
(2)將△A1B1C1繞點(diǎn)C1逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C1并直接寫出A2、B2的坐標(biāo);
(3)求△A2B2C1的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3的圖象經(jīng)過點(diǎn)(﹣1,0),(3,0).
(1)求此二次函數(shù)的解析式;
(2)在直角坐標(biāo)系中描點(diǎn),并畫出該函數(shù)圖象;
x | … | _____ | ____ | ____ | _____ | _____ | … |
y | … | _____ | ____ | ____ | ____ | _____ | … |
(3)根據(jù)圖象回答:當(dāng)函數(shù)值y<0時,求x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)
的圖象交x軸于A、B兩點(diǎn)
其中點(diǎn)A在點(diǎn)B的左側(cè)
,交y軸正半軸于點(diǎn)C,且
,點(diǎn)D在該函數(shù)的第一象限內(nèi)的圖象上.
求點(diǎn)A、點(diǎn)B的坐標(biāo);
若
的最大面積為
平方單位,求點(diǎn)D的坐標(biāo)及二次函數(shù)的關(guān)系式;
若點(diǎn)D為該函數(shù)圖象的頂點(diǎn),且
是直角三角形,求此二次函數(shù)的關(guān)系式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F(xiàn)為BD所在直線上的兩點(diǎn).若AE=
,∠EAF=135°,則以下結(jié)論正確的是( )
![]()
A. DE=1 B. tan∠AFO=
C. AF=
D. 四邊形AFCE的面積為 ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=
在第一象限圖象上一點(diǎn),連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=
的圖象于點(diǎn)P.
(1)求反比例函數(shù)y=
的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△OAP的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=
(k≠0)的圖象交于A、C兩點(diǎn),與x軸交于點(diǎn)D,過點(diǎn)A作AB⊥x軸于點(diǎn)B,點(diǎn)O是線BD的中點(diǎn),AD=2
,cos∠ADB=
.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x為何值時,y1≥y2.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知
,
,點(diǎn)P為AB邊上的一個動點(diǎn),點(diǎn)E、F分別是CA,CB邊的中點(diǎn),過點(diǎn)P作
于D,設(shè)
,圖中某條線段的長為y,如果表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是
![]()
![]()
A. PDB. PEC. PCD. PF
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com