分析 首先延長AD至E,使AD=DE,連接BE,根據(jù)三角形全等的判定方法,可得:△ADC≌△EBD;然后根據(jù)全等三角形的對應(yīng)邊相等,可得:∠CAD=∠BED,據(jù)此推得AB=BE=AC,判斷出△ABC是等腰三角形即可.
解答 證明:如圖,延長AD至E,使AD=DE,連接BE,
,
在△ACD和△EBD中,
$\left\{\begin{array}{l}{AD=ED}\\{∠ADC=∠EDB}\\{CD=BD}\end{array}\right.$,
∴△ACD≌△EBD,
∴BE=AC,∠DAC=∠DEB,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BAD=∠BED,
∴AB=BE,
∴AB=AC,
∴△ABC是等腰三角形.
點(diǎn)評 此題主要考查了等腰三角形的判定,以及三角形全等的判定方法和應(yīng)用,要熟練掌握.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.3,0.4,0.5 | B. | 8,9,10 | C. | 1,$\sqrt{2}$,$\sqrt{3}$ | D. | 11,60,61 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 50° | B. | 60° | C. | 70° | D. | 80° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 花卉數(shù)量(株) | 總費(fèi)用(元) | ||
| A | B | ||
| 第1次購買 | 10 | 25 | 225 |
| 第2次購買 | 20 | 15 | 275 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com