欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】在平面直角坐標(biāo)系中,拋物線y=x2+k﹣1x﹣k與直線y=kx+1交于AB兩點,點A在點B的左側(cè).

1)如圖1,當(dāng)k=1時,直接寫出A,B兩點的坐標(biāo);

2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標(biāo);

3)如圖2,拋物線y=x2+k﹣1x﹣kk0)與x軸交于點C、D兩點(點C在點D的左側(cè)),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.

【答案】1A(-1,0) B(2,3)

2△ABP最大面積s=; P,-

3)存在;k=

【解析】

試題(1) 當(dāng)k=1時,拋物線解析式為y=x2﹣1,直線解析式為y=x+1,然后解方程組即可;

2) 設(shè)Pxx2﹣1).過點PPF∥y軸,交直線AB于點F,則Fx,x+1),所以利用SABP=SPFA+SPFB,

,用含x的代數(shù)式表示為S△ABP=﹣x2+x+2,配方或用公式確定頂點坐標(biāo)即可.(3) 設(shè)直線ABy=kx+1x軸、y軸分別交于點E、F,用k分別表示點E的坐標(biāo),點F的坐標(biāo),以及點C的坐標(biāo),然后在Rt△EOF中,由勾股定理表示出EF的長,假設(shè)存在唯一一點Q,使得∠OQC=90°,則以OC為直徑的圓與直線AB相切于點Q,設(shè)點NOC中點,連接NQ,根據(jù)條件證明△EQN∽△EOF,然后根據(jù)性質(zhì)對應(yīng)邊成比例,可得關(guān)于k的方程,解方程即可.

試題解析:解:(1)當(dāng)k=1時,拋物線解析式為y=x2﹣1,直線解析式為y=x+1

聯(lián)立兩個解析式,得:x2﹣1=x+1,

解得:x=﹣1x=2

當(dāng)x=﹣1時,y=x+1=0;當(dāng)x=2時,y=x+1=3,

∴A﹣1,0),B2,3). 4

2)設(shè)Px,x2﹣1).

如答圖2所示,過點PPF∥y軸,交直線AB于點F,則Fxx+1).

∴PF=yF﹣yP=x+1x2﹣1=﹣x2+x+2

SABP=SPFA+SPFB=PFxF﹣xA+PFxB﹣xF=PFxB﹣xA=PF

∴S△ABP=﹣x2+x+2=﹣x﹣2+

當(dāng)x=時,yP=x2﹣1=﹣

∴△ABP面積最大值為,此時點P坐標(biāo)為(,). 8

3)設(shè)直線ABy=kx+1x軸、y軸分別交于點EF

E,0),F0,1),OE=,OF=1

Rt△EOF中,由勾股定理得:EF==

y=x2+k﹣1x﹣k=0,即(x+k)(x﹣1=0,解得:x=﹣kx=1

∴C﹣k,0),OC=k

假設(shè)存在唯一一點Q,使得∠OQC=90°,如答圖3所示,

則以OC為直徑的圓與直線AB相切于點Q,根據(jù)圓周角定理,此時∠OQC=90°

設(shè)點NOC中點,連接NQ,則NQ⊥EF,NQ=CN=ON=

∴EN=OE﹣ON=

∵∠NEQ=∠FEO∠EQN=∠EOF=90°,

∴△EQN∽△EOF,

,即:

解得:k=±,

∵k0,

∴k=

存在唯一一點Q,使得∠OQC=90°,此時k=12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小龍在全校隨機抽取了一部分同學(xué)就“我最喜愛的體育項目”進(jìn)行了一次調(diào)查(每位同學(xué)必選且只選一項).下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:

(1)小龍一共抽取了   名學(xué)生.

(2)補全條形統(tǒng)計圖;

(3)求“其他”部分對應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知函數(shù)yx+2x軸交于點A,與y軸交于點B,點C與點A關(guān)于y軸對稱.

1)求直線BC的函數(shù)解析式;

2)設(shè)點Mx軸上的一個動點,過點My軸平行線,交直線AB于點P,交直線BC于點Q

①若PQB的面積為,求點M的坐標(biāo):

②在①的條件下,在直線PQ上找一點R,使得MOR≌△MOQ,直接寫出點R的坐標(biāo);

3)連接BM,如圖2.若∠BMP=∠BAC,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛在實踐課上要做一個如圖1所示的折扇,折扇扇面的寬度AB是骨柄長OA的,折扇張開的角度為120°小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面且扇面不能拼接,已知矩形布料長為24cm,寬為21cm小剛經(jīng)過畫圖、計算,在矩形布料上裁剪下了最大的扇面若不計裁剪和粘貼時的損耗,此時扇面的寬度AB為( )

A21cm B20 cm C19cm D18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC在平面直角坐標(biāo)系內(nèi)(0為坐標(biāo)原點),點Ax軸上,點Cy軸上,點B的坐標(biāo)分別為(22),點EBC的中點,點HOA上,且AH,過點H且平行于y軸的HGEB交于點G,現(xiàn)將長方形折疊,使頂點C落在HG上的D點處,折痕為EF,點F為折痕與y軸的交點.

(1)求點D的坐標(biāo);

(2)求折痕EF所在直線的函數(shù)表達(dá)式;

(3)若點P在直線AB上,當(dāng)PFD為等腰三角形時,試問滿足條件的點P有幾個?請求出點P的坐標(biāo),并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設(shè)該款童裝每件售價x元,每星期的銷售量為y件.

1)求yx之間的函數(shù)關(guān)系式;

2)當(dāng)每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?

3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)垃圾分類,推動綠色發(fā)展,某工廠購進(jìn)甲、乙兩種型號的機器人用來進(jìn)行垃圾分類,甲型機器人比乙型機器人每小時多分20kg,甲型機器人分類800kg垃圾所用的時間與乙型機器人分類600kg垃圾所用的時間相等。

1)兩種機器人每小時分別分類多少垃圾?

2)現(xiàn)在兩種機器人共同分類700kg垃圾,工作2小時后甲型機器人因機器維修退出,求甲型機器人退出后乙型機器人還需工作多長時間才能完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校后勤人員到一家文具店給九年級的同學(xué)購買考試用文具包,文具店規(guī)定一次購買400個以上,可享受8折優(yōu)惠.若給九年級學(xué)生每人購買一個,不能享受8折優(yōu)惠,需付款1936元;若多買88個,就可享受8折優(yōu)惠,同樣只需付款1936元.請問該學(xué)校九年級學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B0),且與y軸相交于點C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)DCEAOC相似時,求點D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案