欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過(guò)點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線(xiàn)段EG、GF、AF之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若AG=6,EG=2$\sqrt{5}$,求BE的長(zhǎng).

分析 (1)先依據(jù)翻折的性質(zhì)和平行線(xiàn)的性質(zhì)證明∠DGF=∠DFG,從而得到GD=DF,接下來(lái)依據(jù)翻折的性質(zhì)可證明DG=GE=DF=EF;
(2)連接DE,交AF于點(diǎn)O.由菱形的性質(zhì)可知GF⊥DE,OG=OF=$\frac{1}{2}$GF,接下來(lái),證明△DOF∽△ADF,由相似三角形的性質(zhì)可證明DF2=FO•AF,于是可得到GE、AF、FG的數(shù)量關(guān)系;
(3)過(guò)點(diǎn)G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG=4,然后再△ADF中依據(jù)勾股定理可求得AD的長(zhǎng),然后再證明△FGH∽△FAD,利用相似三角形的性質(zhì)可求得GH的長(zhǎng),最后依據(jù)BE=AD-GH求解即可.

解答 解:(1)證明:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性質(zhì)可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四邊形EFDG為菱形.
(2)EG2=$\frac{1}{2}$GF•AF.
理由:如圖1所示:連接DE,交AF于點(diǎn)O.

∵四邊形EFDG為菱形,
∴GF⊥DE,OG=OF=$\frac{1}{2}$GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴$\frac{DF}{AF}=\frac{FO}{DF}$,即DF2=FO•AF.
∵FO=$\frac{1}{2}$GF,DF=EG,
∴EG2=$\frac{1}{2}$GF•AF.
(3)如圖2所示:過(guò)點(diǎn)G作GH⊥DC,垂足為H.

∵EG2=$\frac{1}{2}$GF•AF,AG=6,EG=2$\sqrt{5}$,
∴20=$\frac{1}{2}$FG(FG+6),整理得:FG2+6FG-40=0.
解得:FG=4,F(xiàn)G=-10(舍去).
∵DF=GE=2$\sqrt{5}$,AF=10,
∴AD=$\sqrt{A{F}^{2}-D{F}^{2}}$=4$\sqrt{5}$.
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴$\frac{GH}{AD}=\frac{FG}{AF}$,即$\frac{GH}{4\sqrt{5}}$=$\frac{4}{10}$.
∴GH=$\frac{8\sqrt{5}}{5}$.
∴BE=AD-GH=4$\sqrt{5}$-$\frac{8\sqrt{5}}{5}$=$\frac{12\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題主要考查的是四邊形與三角形的綜合應(yīng)用,解答本題主要應(yīng)用了矩形的性質(zhì)、菱形的判定和性質(zhì)、相似三角形的性質(zhì)和判定、勾股定理的應(yīng)用,利用相似三角形的性質(zhì)得到DF2=FO•AF是解題答問(wèn)題(2)的關(guān)鍵,依據(jù)相似三角形的性質(zhì)求得GH的長(zhǎng)是解答問(wèn)題(3)的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.2015年目前安徽的人口達(dá)到約69285000人,用科學(xué)記數(shù)法表示為( 。
A.6.9285×108B.69.285×106C.0.69285×108D.6.9285×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在平面直角坐標(biāo)系中,點(diǎn)P(-2,-3)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.先化簡(jiǎn),再求值:$\frac{2a+2}{a}$÷$\frac{{a}^{2}+2a+1}{{a}^{2}}$-$\frac{a}{a+1}$,其中a=$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)計(jì)算:-22+(-$\frac{1}{3}$)-1+2sin60°-|1-$\sqrt{3}$|
(2)先化簡(jiǎn),再求值:($\frac{{x}^{2}-1}{{x}^{2}-2x+1}$-x-1)÷$\frac{x+1}{x-1}$,其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.點(diǎn)P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函數(shù)y=-x2+2x+c的圖象上,則y1,y2,y3的大小關(guān)系是( 。
A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列運(yùn)算正確的是( 。
A.$\sqrt{6}$-$\sqrt{3}$=$\sqrt{3}$B.$\sqrt{(-3)^{2}}$=-3C.a•a2=a2D.(2a32=4a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,AB和⊙O相切于點(diǎn)B,∠AOB=60°,則∠A的大小為(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,AB是⊙O的直徑,直線(xiàn)PA與⊙O相切于點(diǎn)A,PO交⊙O于點(diǎn)C,連接BC.若∠P=40°,則∠ABC的度數(shù)為( 。
A.20°B.25°C.40°D.50°

查看答案和解析>>

同步練習(xí)冊(cè)答案