分析 (1)令y=0解方程即可求得A和B的橫坐標(biāo),然后利用配方法即可求得對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)首先求得D的坐標(biāo),然后利用面積公式即可求解.
解答 解:(1)令y=0,則-x2+2x+3=0,
解得:x1=-1,x2=3.
則A的坐標(biāo)是(-1,0),B的坐標(biāo)是(3,0).
y=-x2+2x+3=-(x-1)2+4,
則對(duì)稱軸是x=1,頂點(diǎn)C的坐標(biāo)是(1,4);
(2)D的坐標(biāo)是(1,-4).
AB=3-(-1)=4,CD=4-(-4)=8,
則四邊形ACBD的面積是:$\frac{1}{2}$AB•CD=$\frac{1}{2}$×4×8=16.
點(diǎn)評(píng) 本題考查了待定系數(shù)法求函數(shù)解析式以及配方法確定二次函數(shù)的對(duì)稱軸和頂點(diǎn)坐標(biāo),正確求得A和B的坐標(biāo)是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{xy}{x^2}$ | B. | $\frac{2}{2x-2y}$ | C. | $\frac{x+y}{{{x^2}-{y^2}}}$ | D. | $\frac{2x}{x+2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1:4 | B. | 1:2 | C. | $\sqrt{2}$ | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com