欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.如圖,將矩形ABCD沿對(duì)角線AC剪開(kāi),再把△ACD沿CA方向平移得到△A1C1D1,連接AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD與△A1C1D1重疊部分面積為S,則下列結(jié)論:
①△A1AD1≌△CC1B;
②當(dāng)x=1時(shí),四邊形ABC1D1是菱形;
③當(dāng)x=2時(shí),△BDD1為等邊三角形;
④S=$\frac{\sqrt{3}}{4}$(x-2)2(0≤x≤2).
其中正確的是①②③(將所有正確答案的序號(hào)都填寫(xiě)在橫線上)

分析 ①根據(jù)矩形的性質(zhì),得∠DAC=∠ACB,再由平移的性質(zhì),可得出∠A1=∠ACB,A1D1=CB,從而證出結(jié)論;
②根據(jù)菱形的性質(zhì),四條邊都相等,可推得當(dāng)C1在AC中點(diǎn)時(shí)四邊形ABC1D1是菱形.
③當(dāng)x=2時(shí),點(diǎn)C1與點(diǎn)A重合,可求得BD=DD1=BD1=2,從而可判斷△BDD1為等邊三角形.
④易得△AC1F∽△ACD,根據(jù)面積比等于相似比平方可得出s與x的函數(shù)關(guān)系式.

解答 解:①∵四邊形ABCD為矩形,
∴BC=AD,BC∥AD
∴∠DAC=∠ACB
∵把△ACD沿CA方向平移得到△A1C1D1
∴∠A1=∠DAC,A1D1=AD,AA1=CC1,
在△A1AD1與△CC1B中,
$\left\{\begin{array}{l}{A{A}_{1}=C{C}_{1}}\\{∠{A}_{1}=∠ACB}\\{{A}_{1}{D}_{1}=CB}\end{array}\right.$
故①正確;
②∵∠ACB=30°,
∴∠CAB=60°,
∵AB=1,
∴AC=2,
∵x=1,
∴AC1=1,
∴△AC1B是等邊三角形,
∴AB=D1C1,
又AB∥D1C1,
∴四邊形ABC1D1是菱形,
故②正確;
③如圖所示:

則可得BD=DD1=BD1=2,
∴△BDD1為等邊三角形,故③正確.
④易得△AC1F∽△ACD,
∴$\frac{{S}_{△A{C}_{1}F}}{{S}_{△ACD}}=(\frac{2-x}{2})^{2}$,
解得:${S}_{△A{C}_{1}F}$=$\frac{\sqrt{3}}{8}(x-2)^{2}$(0<x<2);故④錯(cuò)誤;
綜上可得正確的是①②③.
故答案為:①②③.

點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的判定及解直角三角形的知識(shí),解答本題需要我們熟練掌握全等三角形的判定及含30°角的直角三角形的性質(zhì),有一定難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知兩實(shí)數(shù)a與b,M=a2+b2,N=2ab
(1)請(qǐng)判斷M與N的大小,并說(shuō)明理由.
(2)請(qǐng)根據(jù)(1)的結(jié)論,求$\frac{y^2}{x^2}+\frac{x^2}{y^2}+3$的最小值(其中x,y均為正數(shù))
(3)請(qǐng)判斷a2+b2+c2-ab-ac-bc的正負(fù)性(a,b,c為互不相等的實(shí)數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.計(jì)算:
(1)b$\sqrt{\frac{3b}{a}}•\sqrt{\frac{3{a}^{2}}}$=3b$\sqrt{a}$(a>0,b>0)
(2)$\frac{2\sqrt{{m}^{2}n}}{3\sqrt{mn}}$=$\frac{2\sqrt{m}}{3}$(m>0,n>0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算:
(1)6×(-2)2÷(-23
(2)(3×2)2+(-2)3×5-(-0.28)÷(-2)2
(3)$\frac{1}{(-0.1)^{3}}$-$\frac{1}{-0.{2}^{2}}$+|-23-3|-|-32-4|
(4)-32×1.22÷(-0.3)3+(-$\frac{1}{3}$)2×(-3)3÷(-1)25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:$\frac{22{2}^{2}-222}{22{2}^{2}-444+1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算:-33-[-22+(1-0.2×$\frac{3}{5}$)÷(-2)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算:
(1)$\sqrt{18}$+($\sqrt{2}+1$)-1+(-2)-2
(2)9$\sqrt{3}$+7$\sqrt{12}$-5$\sqrt{48}$;
(3)5$\sqrt{\frac{1}{2}}$-$\sqrt{8}$+$\frac{1}{\sqrt{18}}$+$\frac{3}{2}$$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某糖果廠想要為兒童設(shè)計(jì)一種新型的裝糖果的不倒翁,請(qǐng)你根據(jù)包裝廠設(shè)計(jì)好的三視圖(如圖)的尺寸計(jì)算其容積.(球的體積公式:V=$\frac{4}{3}$πr3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.分解因式:
(1)(2x+y)2-(x+2y)2;
(2)m2-14m+49;
(3)25a2-80a+64.

查看答案和解析>>

同步練習(xí)冊(cè)答案