| A. | 如果直線a∥b.c∥b,那a∥c | B. | 同角或者等角的余角相等 | ||
| C. | 若|a|=|b|,則a=b | D. | 延長線段AB到C,使BC=AB |
分析 根據(jù)命題的定義對(duì)四個(gè)語句進(jìn)行判斷.
解答 解:如果直線a∥b.c∥b,那a∥c,同角或者等角的余角相等,若|a|=|b|,則a=b,它們都是命題;
延長線段AB到C,使BC=AB為描述性語言,它不是命題.
故選D.
點(diǎn)評(píng) 本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng),一個(gè)命題可以寫成“如果…那么…”形式. 有些命題的正確性是用推理證實(shí)的,這樣的真命題叫做定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{12}$÷$\frac{1}{\sqrt{3}}$=$\sqrt{\frac{12}{3}}$=$\sqrt{4}$=2 | B. | $\sqrt{2\frac{1}{2}}$÷$\sqrt{\frac{1}{2}}$=$\sqrt{2}$ | ||
| C. | $\sqrt{0.2}$÷$\sqrt{0.6}$=$\sqrt{\frac{0.2}{0.6}}$=$\sqrt{\frac{1}{3}}$=$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{-16}}{\sqrt{-2}}$=$\sqrt{\frac{16}{2}}$=$\sqrt{8}$=2$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ③④ | B. | ①③④ | C. | ②③④ | D. | ①② |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | m+n>0 | B. | m-n>0 | C. | (m+n)(m-n)>0 | D. | mn<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com