分析 證明△BCE≌△DCG,即可證得∠BEC=∠DGC,然后根據(jù)三角形的內(nèi)角和定理證得∠EHG=90°,則HG⊥BE,然后證明△BGH≌△EGH,則H是BE的中點(diǎn),則OH是△BGE的中位線,根據(jù)三角形的中位線定理即可得到HO=$\frac{1}{2}$BG,HO∥BG,以及∠MOH=∠EGC=45°,再根據(jù)等腰直角三角形的性質(zhì),得出OF=$\frac{1}{2}$EG,∠OFG=45°,以及OH=OF,根據(jù)∠MHO+∠HOM=∠OFH+∠OFG,即可得出∠FMG=∠MFG,最后根據(jù)等腰直角三角形的邊角關(guān)系,得出DB:AB=$\sqrt{2}$:1,即可得到DE:AB=$\sqrt{2}$:1.
解答
解:∵正方形ABCD的邊CD在正方形ECGF的邊CE上,
∴∠BCE=∠DCG=90°,BC=DC,EC=GC,
∴△BCE≌△DCG(SAS),
∴∠CGD=∠CEB,
又∵∠CDG=∠HDE,
∴∠EHD=∠GCD=90°,
∴GH⊥BE,故①正確;
∵∠EGC的平分線GH過(guò)點(diǎn)D,
∴∠BGH=∠EGH,
∵GH⊥BE,
∴∠BHG=∠EHG=90°,
∴△BGH≌△EGH(ASA),
∴BG=EG,故②正確;
∵BG=EG,GH⊥BE,
∴H為BE的中點(diǎn),
又∵O是EG的中點(diǎn),
∴HO是△BEG的中位線,
∴HO=$\frac{1}{2}$BG,HO∥BG,
∴∠MOH=∠EGC=45°,
如圖,連接FO,
∵O是EG的中點(diǎn),
∴等腰Rt△EFG中,OF=$\frac{1}{2}$EG,∠OFG=45°,
∴OH=OF,
∴∠OHF=∠OFH,
∴∠MHO+∠HOM=∠OFH+∠OFG,即∠FMG=∠MFG,
∴FG=MG,即△MFG是等腰三角形,故③正確;
如圖,連接BD,
∵HG垂直平分BE,
∴DE=DB,
∵Rt△ABD中,DB:AB=$\sqrt{2}$:1,
∴DE:AB=$\sqrt{2}$:1,故④錯(cuò)誤;
故答案為:①②③
點(diǎn)評(píng) 本題主要考查了四邊形的綜合應(yīng)用,解題時(shí)需要綜合運(yùn)用正方形的性質(zhì),三角形中位線定理,全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì)以及等腰三角形的判定等,解題的關(guān)鍵是作輔助線構(gòu)造等腰三角形和等腰直角三角形,靈活利用直角三角形的邊角關(guān)系來(lái)計(jì)算.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a>b | B. | b>a | C. | a=b | D. | 無(wú)法比較大小 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com